
Edited by Jeremy I Levin and Stefan Laufer

Anti-Inflammatory Drug Discovery

RSCPublishing

Anti-Inflammatory Drug Discovery

Edited by

Jeremy I Levin

Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA

Stefan Laufer

Institute of Pharmacy, Tuebingen, Germany

RSC Drug Discovery Series No. 26

ISBN: 978-1-84973-413-4

ISSN: 2041-3203

A catalogue record for this book is available from the British Library

© The Royal Society of Chemistry 2012

All rights reserved

Apart from fair dealing for the purposes of research for non-commercial purposes or for private study, criticism or review, as permitted under the Copyright, Designs and Patents Act 1988 and the Copyright and Related Rights Regulations 2003, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of The Royal Society of Chemistry or the copyright owner, or in the case of reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of the licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to The Royal Society of Chemistry at the address printed on this page.

The RSC is not responsible for individual opinions expressed in this work.

Published by The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK

Registered Charity Number 207890

For further information see our web site at www.rsc.org

Printed in the United Kingdom by Henry Ling Limited, at the Dorset Press, Dorchester, DT1 1HD

Anti-Inflammatory Drug Discovery

RSC Drug Discovery Series

Editor-in-Chief:

Professor David Thurston, London School of Pharmacy, UK

Series Editors:

Dr David Fox, *Pfizer Global Research and Development, Sandwich, UK* Professor Salvatore Guccione, *University of Catania, Italy* Professor Ana Martinez, *Instituto de Quimica Medica-CSIC, Spain* Professor David Rotella, *Montclair State University, USA*

Advisor to the Board:

Professor Robin Ganellin, University College London, UK

Titles in the Series:

- 1: Metabolism, Pharmacokinetics and Toxicity of Functional Groups
- 2: Emerging Drugs and Targets for Alzheimer's Disease; Volume 1
- 3: Emerging Drugs and Targets for Alzheimer's Disease; Volume 2
- 4: Accounts in Drug Discovery
- 5: New Frontiers in Chemical Biology
- 6: Animal Models for Neurodegenerative Disease
- 7: Neurodegeneration
- 8: G Protein-Coupled Receptors
- 9: Pharmaceutical Process Development
- Extracellular and Intracellular Signaling
- 11: New Synthetic Technologies in Medicinal Chemistry
- 12: New Horizons in Predictive Toxicology
- 13: Drug Design Strategies: Quantitative Approaches

- 14: Neglected Diseases and Drug Discovery
- 15: Biomedical Imaging
- 16: Pharmaceutical Salts and Cocrystals
- 17: Polyamine Drug Discovery
- 18: Proteinases as Drug Targets
- 19: Kinase Drug Discovery
- 20: Drug Design Strategies: Computational Techniques and Applications
- 21: Designing Multi-Target Drugs
- 22: Nanostructured Biomaterials for Overcoming Biological Barriers
- 23: Physico-Chemical and Computational Approaches to Drug Discovery
- 24: Biomarkers for Traumatic Brain Injury
- 25: Drug Discovery from Natural Products
- 26: Anti-Inflammatory Drug Discovery

How to obtain future titles on publication:

A standing order plan is available for this series. A standing order will bring delivery of each new volume immediately on publication.

For further information please contact:

Book Sales Department, Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK

Telephone: +44 (0)1223 420066, Fax: +44 (0)1223 420247,

Email: booksales@rsc.org

Visit our website at http://www.rsc.org/Shop/Books/

Preface

Driven by the need for new orally active anti-inflammatory medicines, intensive research is ongoing in both industry and academia on a diverse set of biological pathways and targets with the goal of delivering therapeutics to improve the lives of patients with conditions such as asthma, rheumatoid arthritis, atherosclerosis, inflammatory bowel disease, psoriasis, allergic diseases, and pain. It was the goal of this volume to bring together respected scientists who have been directly involved in these drug discovery efforts to present the rationale for prosecuting specific targets, a current review of the medicinal chemistry strategies that have been used, and the outcome of those efforts. For some of these targets drugs with exciting potential have been delivered to clinical trials, while others have encountered unexpected roadblocks, and both of those outcomes provide important lessons for today's drug hunters. It is our hope that the stories presented herein will serve as a valuable resource for anyone interested in the discovery of new anti-inflammatory drugs.

In addition, we would like to express our great appreciation to all of the chapter authors for delivering clear, comprehensive reviews that will inform and enlighten readers on the state of the art in their respective areas of research. We would also like to express our appreciation to Professor David Rotella (Montclair State University), and Gwen Jones and Amaya Camara at RSC Publishing for their help, support and patience in the course of putting together this book.

Jeremy I. Levin, Ph.D. Stefan Laufer, Ph.D.

RSC Drug Discovery Series No. 26 Anti-Inflammatory Drug Discovery Edited by Jeremy I Levin and Stefan Laufer © The Royal Society of Chemistry 2012 Published by the Royal Society of Chemistry, www.rsc.org

Contents

Introductio	n		1
		Section 1: Arachidonic Acid Cascade	
Chapter 1		crosomal Prostaglandin E ₂ Synthase-1 dreas Koeberle and Oliver Werz	7
	1.1	Function of PGE ₂ as Bioactive Mediator	8
	1.2	PGE ₂ Biosynthesis by mPGES-1	8
	1.3	Structure and Biochemical Properties of mPGES-1	9
	1.4	Regulation of mPGES-1 Expression	9
	1.5	Redirection of the mPGES-1 Substrate PGH ₂ Due	
		to the Action of mPGES-1 Inhibitors	10
	1.6	Determination of mPGES-1 Activity	10
	1.7	mPGES-1 in Disease and Homeostasis – Results	
		from KO Studies	11
		1.7.1 Inflammation, Fever and Pain	11
		1.7.2 Neurological Diseases	11
		1.7.3 Cancer	12
		1.7.4 Renal and Cardiovascular System	12
	1.8	Direct Inhibitors of mPGES-1	12
		1.8.1 MK886 Derivatives	13
		1.8.2 Phenanthreneimidazoles and Related	
		Compounds	14
		1.8.3 Others	16
	1.9	Dual Inhibitors of mPGES-1 and 5-LO	17
		1.9.1 MK-886 and Derivatives	17
		1.9.2 Pirinixic Acid Derivatives	18
		1.9.3 Acylphloroglucinols	20
		1.9.4 Others	20

RSC Drug Discovery Series No. 26 Anti-Inflammatory Drug Discovery

Edited by Jeremy I Levin and Stefan Laufer

© The Royal Society of Chemistry 2012

Published by the Royal Society of Chemistry, www.rsc.org

viii	Contents
V111	

	1.10 Selective Suppressors of mPGES-1 Expression1.11 ConclusionReferences	21 23 23
Chapter 2	Inhibitors of Cytosolic Phospholipase $A_2\alpha$ as Anti-inflammatory Drugs Matthias Lehr	35
	 2.1 Classification of the Phospholipase A₂ Enzymes 2.2 Properties and Function of Cytosolic 	35
	Phospholipase $A_2\alpha$	37
	2.3 Assessment of cPLA ₂ α Inhibitors	38
	2.4 Inhibitors of cPLA ₂ α	39
	2.4.1 General	39
	2.4.2 Trifluoromethyl Ketones and Methyl	20
	Fluorophosphonates	39
	2.4.3 α,β-Dioxoesters and α-Ketoamides2.4.4 Benzhydrylindoles	41 41
	2.4.4 Benzhydrylindoles 2.4.5 Thiazolidinediones	45
	2.4.5 Thiazondinediones 2.4.6 (Aryloxy)propan-2-ones	46
	2.4.7 Aryl Thiazolidinones	50
	2.5 Conclusions	51
	References	52
Chapter 3	Leukotriene A ₄ Hydrolase: Biology, Inhibitors and Clinical Applications Cheryl A. Grice, Anne M. Fourie and Alice Lee-Dutra	58
	3.1 Background: Eicosanoids and Leukotrienes	58
	3.2 Leukotriene A ₄ Hydrolase	61
	3.3 LTA ₄ H – Pre-clinical and Human Genetic Rationale	62
	3.3.1 Respiratory Disease	62
	3.3.2 Gastrointestinal Disease	64
	3.3.3 Inflammatory Arthritis	65
	3.3.4 Cardiovascular Disease	66
	3.3.5 Cancer	67
	3.4 Small-molecule Approaches Targeting LTA ₄ H	68
	3.4.1 X-ray Crystallography	69
	3.4.2 G. D. Searle & Co.	70
	3.4.3 Janssen Pharmaceutica NV 3.4.4 deCODE Genetics	74
	3.4.5 Schering AG	81
	3.4.6 Santen Pharmaceutical Co., Ltd	84 88
	3.5 Clinical Evaluation of LTB ₄ Modulators	89

Contents	1X

Contents		1X
	3.6 Summary	90
	Acknowledgements	91
	References	91
Chapter 4	CRTH2 Antagonists	104
Chapter 1	L. Nathan Tumey	
	,	
	4.1 Role of PGD2 in Inflammation and Asthma	104
	4.2 Receptors for PGD2: DP and CRTH2	105
	4.3 Pharmacology of CRTH2	107
	4.3.1 Role of CRTH2 in Animal Disease Models	107
	4.3.2 Role of CRTH2 in Human Disease	109
	4.4 CRTH2 Antagonists	109
	4.4.1 Tricyclic Ramatroban Antagonists	110
	4.4.2 Indole Acetic Acids and Related Antagonists	112
	4.4.3 Phenoxyacetic Acids, Phenyl Acetic Acids	
	and Related Antagonists	115
	4.4.4 Tetrahydroquinoline CRTH2 Antagonists	119
	4.4.5 Dual CRTH2/DP Antagonists	120
	4.5 Activity of CRTH2 Antagonists in Animal	
	Efficacy Studies	121
	4.6 CRTH2 Biomarkers for Clinical Development	125
	4.7 CRTH2 Antagonists in Clinical Development	125
	4.8 Summary	127
	References	127
	Section 2: Kinases	
Chantan 5	Dual Inhibition of Dhasmhadisatoness A and m20 MAD Vinces	
Chapter 5	Dual Inhibition of Phosphodiesterase-4 and p38 MAP Kinase: A Strategy for Treatment of Chronic Inflammatory Diseases	137
	Wolfgang Albrecht and Stefan Laufer	13/
	Wolfgung Albrecht und Stefan Laufer	
	5.1 Introduction	137
	5.2 p38 MAPK	138
	5.3 Binding Modes of p38 MAPK Inhibitors	141
	5.4 Clinical Development of p38 MAPK Inhibitors	144
	5.5 Evidences for p38 MAPK as Key Enzyme in	
	Chronic Inflammation	146
	5.6 New Indications for p38 MAPK Inhibitors	149
	5.7 Therapeutic Potential of Drug Combinations with	
	p38 MAPK Inhibitors	149
	5.8 Discovery and Development of PDE4 Inhibitors	150
	5.9 Dual Inhibitors of p38 MAPK and PDE4	152
	5.10 Conclusion	153
	References	153

X Contents

Chapter 6	MAPKAP Kinase 2 (MK2) as a Target for Anti-inflammatory Drug Discovery Jeremy J. Edmunds and Robert V. Talanian				
	6.1 Introduction	158			
	6.2 Oral Anti-cytokine Target Identification	159			
	6.2.1 p38 MAPK Signal Transduction Pathway6.2.2 MK2 as an Oral Anti-inflammatory Drug	159			
	Discovery Target	160			
	6.2.3 Mechanism of Cytokine Regulation by MK26.2.4 Functions of MK2 Beyond Cytokine	161			
	Regulation	162			
	6.3 Medicinal Chemistry	163			
	6.4 Challenges in Translating MK2 Inhibition to				
	Favourable in-vivo Effects	172			
	6.5 Summary	174			
	Acknowledgements	174			
	References	174			
Chapter 7	Syk Kinase Inhibitors	181			
	Neelu Kaila, Mark S. Ryan, Atli Thorarensen and Eddine Saiah				
	7.1 Introduction	181			
	7.2 The Role of Syk in Inflammation	182			
	7.3 Structural Features of Syk	186			
	7.4 Known Chemotypes of Syk Inhibitors	186			
	7.4.1 Aminopyrimidines	189			
	7.4.2 Bicyclic 6/5 Cores	193			
	7.4.3 Bicyclic 6/6 Cores	198			
	7.4.4 Monocyclic Cores	200			
	7.5 Clinical Development of Syk Inhibitors	201			
	7.6 Summary	204			
	References	204			
Chapter 8	Janus Kinases – Just Another Kinase or a Paradigm Shift for				
	the Treatment of Autoimmune Disease?				
	Michael Skynner, Phil Jeffrey, Michael Binks and Michael Woodrow				
	8.1 Kinase Drug Discovery	211			
	8.2 Janus Kinases (JAKs)	212			
	8.2.1 Identification and Structure of JAK Family Proteins	212			
	8.2.2 Signalling Mechanisms of the JAKs	217			

Contents

		0.2.3	reedback inhibition of JAKS by SOCS	
			Proteins	217
		8.2.4	JAK Cytokine Signalling	218
			Interrogating JAK Function through Loss of	
		0.2.0	Function Studies	219
		8.2.6	JAK Proteins and STAT Responses	220
	8.3		tion of JAK Proteins – Gain of Function Studies	221
	0.5			221
			JAK2 Gain of Function	
	0.4		JAK1 and JAK3 Gain of Function	222
	8.4		Inhibitors for Immune Mediated Disease	222
			Introduction	222
			JAK Drug Discovery	223
	8.5		Inhibitor Chemistry	223
			Pan JAK Inhibitors	223
		8.5.2	JAK3 Selective Molecules	229
		8.5.3	JAK2 Selective Molecules	229
	8.6	Clinic	al Studies with JAK Inhibitors	232
		8.6.1	Tofacitinib (CP-690,550)	232
		8.6.2	INCB028050 and INCB018424 (ruxolitonib)	
			for Immune Mediated Disease	239
		8.6.3	Vertex VX-509	241
			Other JAK Inhibitors in Development	242
	8.7		usions and Future Perspectives	242
	0.7			272
	Refe		The state of the s	242
	Refe	erences		242
Chapter 9		erences	•	242
Chapter 9	IKK	erences β as a	Therapeutic Intervention Point for Diseases	
Chapter 9	IKK Rela	erences β as a T nted to I	Therapeutic Intervention Point for Diseases	242255
Chapter 9	IKK Rela	erences β as a	Therapeutic Intervention Point for Diseases	
Chapter 9	IKK Rela Erio	erences β as a 1 ated to 1 k R. R.	Therapeutic Intervention Point for Diseases Inflammation Young	255
Chapter 9	IKK Rela Erio	B as a Tated to I Introd	Therapeutic Intervention Point for Diseases Inflammation Young Tuction	255 255
Chapter 9	IKK Rela Erio 9.1 9.2	B as a Tated to I Introd	Therapeutic Intervention Point for Diseases Inflammation Young Tuction Validation	255 255 257
Chapter 9	IKK Rela Erio	Frances A as a Tated to I A R. R. Introd Target IKKβ	Therapeutic Intervention Point for Diseases Inflammation Young Tuction Validation Therapeutic Target Considerations	255 255 257 258
Chapter 9	IKK Rela Erio 9.1 9.2	B as a Three to I arget IKKβ 9.3.1	Therapeutic Intervention Point for Diseases Inflammation Young Tuction Validation Therapeutic Target Considerations Safety	255 255 257 258 258
Chapter 9	IKK Rela Erio 9.1 9.2	B as a Target IKKβ 9.3.1 9.3.2	Therapeutic Intervention Point for Diseases Inflammation Young Tuction Validation Therapeutic Target Considerations Safety NF-κB Pathway Complexities	255 255 257 258 258 259
Chapter 9	IKK Rela Erio 9.1 9.2	B as a Tarted to I Introd Target IKKβ 9.3.1 9.3.2 9.3.3	Therapeutic Intervention Point for Diseases Inflammation Young Tuction Validation Therapeutic Target Considerations Safety NF-kB Pathway Complexities Isoform Selectivity	255 255 257 258 258 259 259
Chapter 9	IKK Rela Erio 9.1 9.2	B as a Target IKKβ 9.3.1 9.3.2	Therapeutic Intervention Point for Diseases Inflammation Young Tuction Validation Therapeutic Target Considerations Safety NF-kB Pathway Complexities Isoform Selectivity	255 255 257 258 258 259
Chapter 9	IKK Rela Erio 9.1 9.2	Aβ as a Tated to I Introd Target IKKβ 9.3.1 9.3.2 9.3.3 9.3.4	Therapeutic Intervention Point for Diseases Inflammation Young Tuction Validation Therapeutic Target Considerations Safety NF-kB Pathway Complexities Isoform Selectivity	255 255 257 258 258 259 259
Chapter 9	9.1 9.2 9.3	Aβ as a Tated to I Introd Target IKKβ 9.3.1 9.3.2 9.3.3 9.3.4	Therapeutic Intervention Point for Diseases Inflammation Young uction Validation Therapeutic Target Considerations Safety NF-κB Pathway Complexities Isoform Selectivity Broader Kinase Selectivity	255 257 258 258 259 259 260
Chapter 9	9.1 9.2 9.3	A as a Tarted to I arget IKKβ 9.3.1 9.3.2 9.3.3 9.3.4 Chemi	Therapeutic Intervention Point for Diseases Inflammation Young Tuction Validation Therapeutic Target Considerations Safety NF-kB Pathway Complexities Isoform Selectivity Broader Kinase Selectivity cal Matter	255 257 258 258 259 259 260 260
Chapter 9	9.1 9.2 9.3	A as a Tarted to I arget IKKβ 9.3.1 9.3.2 9.3.4 Chemin 9.4.1	Therapeutic Intervention Point for Diseases Inflammation Young Tuction Validation Therapeutic Target Considerations Safety NF-kB Pathway Complexities Isoform Selectivity Broader Kinase Selectivity cal Matter Aminopyrimidines	255 257 258 258 259 260 260 261
Chapter 9	9.1 9.2 9.3	A as a Tarted to I arget IKKβ 9.3.1 9.3.2 9.3.3 9.3.4 Chemi 9.4.1 9.4.2	Therapeutic Intervention Point for Diseases Inflammation Young Tuction Validation Therapeutic Target Considerations Safety NF-kB Pathway Complexities Isoform Selectivity Broader Kinase Selectivity cal Matter Aminopyrimidines Thiophenecarboxamides	255 257 258 258 259 260 260 261 264
Chapter 9	9.1 9.2 9.3	Fig. 18 as a Tarted to I with R. R. Introd Target IKKβ 9.3.1 9.3.2 9.3.3 9.3.4 Chemi 9.4.1 9.4.2 9.4.3	Therapeutic Intervention Point for Diseases Inflammation Young Tuction Validation Therapeutic Target Considerations Safety NF-κB Pathway Complexities Isoform Selectivity Broader Kinase Selectivity cal Matter Aminopyrimidines Thiophenecarboxamides 2-Hydroxyphenylpyridines Indole Carboxamides	255 257 258 258 259 260 260 261 264 269 272
Chapter 9	9.1 9.2 9.3	Frances (β as a Tarted to I arted to I art	Therapeutic Intervention Point for Diseases Inflammation Young Tuction Validation Therapeutic Target Considerations Safety NF-kB Pathway Complexities Isoform Selectivity Broader Kinase Selectivity cal Matter Aminopyrimidines Thiophenecarboxamides 2-Hydroxyphenylpyridines	255 255 257 258 258 259 260 260 261 264 269 272 274
Chapter 9	9.1 9.2 9.3	Figure 1. A series of the ser	Therapeutic Intervention Point for Diseases Inflammation Young Tuction Validation Therapeutic Target Considerations Safety NF-κB Pathway Complexities Isoform Selectivity Broader Kinase Selectivity cal Matter Aminopyrimidines Thiophenecarboxamides 2-Hydroxyphenylpyridines Indole Carboxamides Pyrazole Carboxamides β-Carbolines	255 255 257 258 258 259 260 260 261 264 269 272 274 276
Chapter 9	9.1 9.2 9.3	Figure 1. Figur	Therapeutic Intervention Point for Diseases Inflammation Young uction Validation Therapeutic Target Considerations Safety NF-κB Pathway Complexities Isoform Selectivity Broader Kinase Selectivity cal Matter Aminopyrimidines Thiophenecarboxamides 2-Hydroxyphenylpyridines Indole Carboxamides Pyrazole Carboxamides Pyrazole Carboxamides Imidazo Pyridines	255 255 257 258 258 259 260 260 261 264 269 272 274 276 277
Chapter 9	9.1 9.2 9.3	Frances (β as a Tarted to I let R. R. Introd Target IKKβ 9.3.1 9.3.2 9.3.3 9.3.4 Chemi 9.4.1 9.4.2 9.4.3 9.4.4 9.4.5 9.4.6 9.4.7 9.4.8	Therapeutic Intervention Point for Diseases Inflammation Young Tuction Validation Therapeutic Target Considerations Safety NF-κB Pathway Complexities Isoform Selectivity Broader Kinase Selectivity cal Matter Aminopyrimidines Thiophenecarboxamides 2-Hydroxyphenylpyridines Indole Carboxamides Pyrazole Carboxamides β-Carbolines	255 255 257 258 258 259 260 260 261 264 269 272 274 276

••	
X11	Contents

	9.6	Future Outlook	285
	Ack	nowledgement	285
	Refe	erences	285
Chapter 10	Bruto	on's Tyrosine Kinase (Btk)	297
	Mari	k E. Schnute, Adrian Huang and Eddine Saiah	
	10.1	Introduction	297
	10.2	Btk Biochemistry	299
	10.3		299
		10.3.1 Role in B-cell Development and Function	299
	10.4	10.3.2 Role in Myeloid and Other Cells	302
	10.4	Btk as an Anti-inflammatory Target	303
	10.5	C.	304
	10.6	Small-molecule Approaches to Btk Inhibition	308
		10.6.1 Non-covalent, Reversible Inhibitor Strategies10.6.2 Covalent Inhibitor Strategies	309 313
	10.7	10.6.2 Covalent Inhibitor Strategies Clinical Experience with Btk Inhibitors	320
	10.7	Conclusions	321
		owledgement	322
		rences	322
			322
		Section 3: GPCRs	
Chapter 11	CCR	1	329
•		obert Merritt and Annette Gilchrist	
	11.1	Introduction	329
		11.1.1 What is CCR1?	329
		11.1.2 CCR1 Involvement in Cells	330
		11.1.3 CCR1 Involvement in Inflammatory Diseases	331
		11.1.4 CCR1 Involvement in Cancer	331
		11.1.5 CCR1 Inhibitors	333
	11.2	CCR1 Inhibitors in Human Trials	333
		11.2.1 Berlex	333
		11.2.2 Pfizer	334
		11.2.3 Millennium	336
		11.2.4 AstraZeneca 11.2.5 ChemoCentryx	336
	11.3	Pre-clinical CCR1 Inhibitors	337 338
	11.5	11.3.1 Pharmacopeia/Ligand	338
		11.3.2 Novartis	339
		11.3.3 Banyu and Merck	340
		11.3.4 Bristol-Myers Squibb	341
		11.3.5 Boehringer Ingelheim	341

Contents				xiii
	11.4	Strateg	gies to Improve CCR1 Compounds	342
		11.4.1	Increase Receptor Coverage	342
		11.4.2	Address Chemokine Promiscuity	342
		11.4.3	Interrogate Signalling Using a	
			Context-Dependent Approach	343
	11.5	Conclu	ision	343
	Refe	rences		344
Chapter 12	. CCR	2 Antago	onists for the Treatment of Diseases	
•		_	th Inflammation	350
	Cuife	en Hou a	nd Zhihua Sui	
	12.1	Introdu	action	350
	12.2		y of CCR2	351
			Chemokines	351
		12.2.2	Monocyte Chemoattractant Protein-1	
			(MCP-1)	352
		12.2.3	CC-Chemokine Receptor 2 (CCR2)	352
		12.2.4	CCR2 Signal Transduction Pathways	353
		12.2.5	Roles of CCR2 and Its Ligands in	
			Diseases	354
	12.3	Medici	nal Chemistry of CCR2 Antagonists	361
		12.3.1	CCR2 Antagonist Pharmacophore	362
		12.3.2	Pyrrolidines	363
		12.3.3	Piperidines	366
		12.3.4	Azetidines	368
		12.3.5	Cyclopentylamines	370
		12.3.6	Cyclohexylamines	372
		12.3.7	Quaternary Ammonium	374
		12.3.8	Sulfonamides	374
		12.3.9	Other Structures	376
	12.4		and Challenges	376
		12.4.1	Pre-clinical Challenges	376
		12.4.2	Clinical Challenges	377
	12.5	Conclu		378
		owledge	ment	379
	Refer	rences		379
Chapter 13	Recei	nt Advan	ces in Selective CB ₂ Agonists for the	
_		ment of	_ 0	391
	E. J.	Gilbert d	and C. A. Lunn	
	13.1	Introdu	action	391
	13.2	Finding	g Cannabinoid CB ₂ Receptors	
		in the C	CNS	392

xiv Contents

	13.3		394
		13.3.1 Cannabinoid CB ₂ Receptor Involvement	
		in Pain	394
	13.4	CB ₂ Agonist Chemotypes	396
		13.4.1 Acyclic Cores	397
		13.4.2 Monocyclic Cores	397
		13.4.3 Bicyclic Cores	401
		13.4.4 Tricyclic Cores	406
		13.4.5 Biaryl Cores	406
		13.4.6 Triaryl Cores	407
	13.5	Clinical Status	407
	Refe	rences	409
		Section 4: Sphingolipids	
Chapter 14	S1P	Receptor Agonists	417
	Craig	g A. Miller	
	14.1	S1P Biology and Relevance to the Pathological	
		Features of Multiple Sclerosis	417
		14.1.1 S1P Biosynthesis, Receptor Expression and	
		Function	417
		14.1.2 Pathological Features of Multiple Sclerosis	419
	14.2	Discovery and Development of Fingolimod	
		(FTY720/Gilenya®; Novartis)	420
		14.2.1 Discovery of Fingolimod and S1P Receptor	
		Binding Mode	420
		14.2.2 In-vitro and in-vivo Pharmacology of	
		Fingolimod	421
		14.2.3 Clinical Efficacy of Fingolimod	423
	14.3	Medicinal Chemistry Approaches to	
		Second-generation S1P Receptor Agonists	424
		14.3.1 Overview of Second-generation Agonists	424
		14.3.2 Direct Agonists – Triaryl Scaffold	424
		14.3.3 Direct Agonists – Additional Chemotypes	430
		14.3.4 Prodrug Agonists	435
	14.4	S1P Receptor Antagonists	438
	14.5	Conclusion and Clinical Landscape	439
		rences	440
Chapter 15	Tippi	ng the Balance of Sphingosine 1-Phosphate Production:	
		gosine Kinases and Sphingosine 1-Phosphate Lyase as	
	Immu	ne Therapeutic Targets	444
		as Oravecz and David Augeri	
	15.1	Introduction	444
	15.2	Sphingosine 1-Phosphate Homeostasis	446

Contents

	15.3	The Sphingosine 1-Phosphate Network and Immune	
		Regulation	447
		15.3.1 The Pro-inflammatory Function of the	
		Sphingosine 1-Phosphate Pathway	448
		15.3.2 The Anti-inflammatory Function of the	
		Sphingosine 1-Phosphate Pathway	452
	15.4	Medicinal Chemistry Approaches to Inhibit	
		Sphingosine 1-Phosphate Lyase	455
		15.4.1 Pharmaceutical Targeting of Sphingosine	
		1-Phosphate Lyase in Animal Models of	
		Inflammation: PK-PD Relationship,	
		Mechanism and Pharmacology	459
	15.5	2 11	
		Sphingosine Kinases SK1 and SK2	463
	15.6	Pharmaceutical Targeting of Sphingosine Kinases	
		and Sphingosine 1-Phosphate Lyase in Animal	
		Models of Inflammation	469
	15.7	Concluding Remarks	470
	Ackn	owledgements	470
	Refe	rences	470
		Section 5: Steroid Hormone Receptors	
Chapter 16	Non-	steroidal Dissociated Glucocorticoid Receptor Agonists	481
	Hoss	ein Razavi and Christian Harcken	
	16.1	Introduction	481
	16.2	Hydroxy-trifluoromethyl-phenyl-pentanoic Aryl	
		Amides and Related Trifluoromethyl Carbinols	485
	16.3	Dihydro-1 <i>H</i> -[1]benzopyrano[3,4-f]quinolines	491
	16.4	Dihydro- and Tetrahydroquinolines	494
	16.5	Fluorocortivazol-derived Scaffolds	497
	16.6	N-Aryl Indazole Analogues	501
	16.7	Additional Fused Cores	502
	16.8	Sulfonamide-linked Scaffolds	505
	16.9	Conclusion	507
		owledgements	508
	Refer	rences	508
Subject Inde	ex		517

Introduction

The discovery of new and novel anti-inflammatory drugs is an area of intense interest within both the pharmaceutical industry and academic laboratories. Significant advances have been made in the treatment of inflammatory diseases such as rheumatoid arthritis (RA) and multiple sclerosis, but most dramatically with new biologic agents. Perhaps due in part to the mixed experiences with COX-2 inhibitors, very few small molecule anti-inflammatory drugs with novel modes of action have made it to the market in the last decade. Therefore, there remains an enormous unmet medical need for new, effective and safe small molecule disease-modifying therapies to expand treatment options for these and other indications, including asthma and chronic obstructive pulmonary disease (COPD), allergic diseases, atherosclerosis, psoriasis, inflammatory bowel disease and pain.

Inflammatory diseases are characterized by numerous symptoms and, on a mechanistic basis, multiple pathways are involved. This multi-factorial nature of inflammation is both an opportunity and a challenge for drug discovery. The aim of this book is to review recent noteworthy medicinal chemistry approaches to a variety of important therapeutic targets and so provide a key reference for those interested in the prosecution of modern drug-discovery programs directed at anti-inflammatory mechanisms of action. The biology, pharmacology and medicinal chemistry literature of a collection of topics ranging from components of the arachidonic acid cascade, to kinases, GPCRs, sphingolipids and steroid hormone receptors have been summarized by highly respected scientists from academia and industry offering new insights on major advances and issues related to bringing new anti-inflammatory therapies to market.

In the first section of this text, drug targets in the arachidonic acid (AA) cascade are described. This pathway, although it is the molecular target of very old drugs like aspirin, is still not fully understood. For example, COX-1b ("COX-3") might be the molecular target for paracetamol (acetaminophen) in

RSC Drug Discovery Series No. 26 Anti-Inflammatory Drug Discovery Edited by Jeremy I Levin and Stefan Laufer © The Royal Society of Chemistry 2012 Published by the Royal Society of Chemistry, www.rsc.org 2 Introduction

dogs, but not in man. Taking into account the lessons of COX-2 drug development, an important downstream target is the microsomal prostaglandin E2 synthase-1 (mPGES1), and inhibition of this mechanism has the potential to yield a third generation of non-steroidal anti-inflammatory drugs (NSAIDs).

The opposite approach, going upstream, leads to cytosolic phospholipase A₂ alpha (cPLA₂ α) as a target for the rapeutic intervention. The rate-limiting step in the generation of prostaglandins, leukotrienes and platelet activating factor (PAF), all highly active substances with diverse biological actions in inflammation, is the cleavage of the sn-2-ester of membrane phospholipids by a phospholipase A₂ (PLA₂). Among the superfamily of PLA₂ enzymes, cPLA₂α is thought to play the primary role in this biochemical reaction. Therefore, the inhibition of cPLA₂α activity is an attractive approach for the control of inflammatory disorders. Furthermore, on the leukotriene branch of the arachidonic acid cascade is the cytosolic enzyme leukotriene A₄ hydrolase (LTA₄H), which catalyzes the formation of the pro-inflammatory mediator LTB₄. The inhibition of LTA₄H offers an alternative to blocking the targets 5-lipoxygenase (5-LO) and 5-lipoxygenase activating protein (FLAP) for modulating LTB4 levels and has potential utility for treating a variety of inflammatory disorders including coronary artery disease, though this awaits clinical validation.

The AA cascade section concludes with CRTH2, the chemoattractant receptor homologous molecule expressed on T helper type 2 cells, though this target could have also been placed in Section 3 since it is a G-protein coupled receptor (GPCR). Small-molecule antagonists of CRTH2, the receptor for prostaglandin D_2 (PGD₂), have been the subject of extensive research in the pharmaceutical industry and more than ten of these have been advanced to clinical trials for indications ranging from seasonal allergic rhinitis to asthma and atopic dermatitis, making it a very promising therapeutic target.

The second section of this volume focuses on protein kinase inhibitors as anti-inflammatory agents, although this field still suffers from important unanswered questions. From 518 protein kinases in our genome, about 250 are disease related. However, the fundamental role of kinases in signal transduction raises questions about how safe and free of side-effects kinase inhibitors can be. Another important question concerns selectivity within the human kinome. Thus, how selective is selective enough, and is the dogma "one mechanism, one target, one disease" still valid? The inhibition of multiple kinases might be beneficial in cancer, but it remains to be demonstrated that similarly promiscuous inhibitors provide the necessary safety margin for utility in treating inflammation. Despite excellent pre-clinical evidence, many kinase targets still suffer from a lack of clinically proven target validation.

Nevertheless, there has been an explosion of academic and industrial research in this field, fuelled by the groundbreaking success of anti-TNF biologicals for the treatment of rheumatoid arthritis. In the search for small-molecule drugs that impact the biosynthesis and/or release of pro-inflammatory cytokines, prominent targets include the kinases p38, MK2, Syk, JAK, IKK β and Btk. Many p38 MAP kinase inhibitors have entered clinical trials but,