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Preface

This book deals with computer arithmetic in a more general sense than usual, and
shows how the arithmetic and mathematical capability of the digital computer can be
enhanced in a quite natural way. The work is motivated by the desire and the need
to improve the accuracy of numerical computing and to control the quality of the
computed result.

As a first step towards achieving this goal, the accuracy requirements for the ele-
mentary floating-point operations as defined by the IEEE arithmetic standard [644],
for instance, are extended to the customary product spaces of computation: the com-
plex numbers, the real and complex intervals, the real and complex vectors and ma-
trices, and the real and complex interval vectors and interval matrices. All computer
approximations of arithmetic operations in these spaces should ideally deliver a re-
sult that differs from the correct result by at most one rounding. For all these product
spaces this accuracy requirement leads to operations which are distinctly different
from those traditionally available on computers. This expanded set of arithmetic op-
erations is taken as a definition of what is called basic computer arithmetic.

Central to this treatise is the concept of semimorphism. It provides a mapping
principle between the mathematical product spaces and their digitally representable
subsets. The properties of a semimorphism are designed to preserve as many of the
ordinary mathematical laws as possible. All computer operations of basic computer
arithmetic are defined by semimorphism.

The book has three antecedents:

(I) Kulisch, U.W., Grundlagen des numerischen Rechnens — Mathematische Be-
griindung der Rechnerarithmetik, Bibliographisches Institut, Mannheim, Wien,
Ziirich, 1976, 467 pp., ISBN 3-411-015617-9.

(II) Kulisch, U. W. and Miranker W. L., Computer Arithmetic in Theory and Practice,
Academic Press, New York, 1981, 249 pp., ISBN 0-12-428650-X.
(IIT) Kulisch, U. W., Advanced Arithmetic for the Digital Computer — Design of Arith-
metic Units, Springer-Verlag, Wien, New York, 2002, 139 pp., ISBN3-211-
83870-8.

The need to define all computer approximations of arithmetic operations by semi-
morphism goes back to the first of these books. By the time the second book had been
written, early microprocessors were on the market. They were made with a few thou-
sand transistors, and ran at 1 or 2 MHz. Arithmetic was provided by an 8-bit adder.
Floating-point arithmetic could only be implemented in software. In 1985 the IEEE
binary floating-point arithmetic standard was internationally adopted. Floating-point
arithmetic became hardware supported on microprocessors, first by coprocessors and
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later directly within the CPU. Of course, all operations of basic computer arithmetic
can be simulated using elementary floating-point arithmetic. This, however, is rather
complicated and results in unnecessarily slow performance. A consequence of this is
that for large problems the high quality operations of basic computer arithmetic are
hardly ever applied. Higher precision arithmetic suffers from the same problem if it
is simulated by software.

Dramatic advances in speed and memory size of computers have been made since
1985. Today a computer chip holds more than one billion transistors and runs at
3 GHz or more. Results of floating-point operations can be delivered in every cycle.
Arithmetic speed has gone from megaflops to gigaflops, to teraflops, and to petaflops.
This is not just a gain in speed. A qualitative difference goes with it. If the numbers
a petaflops computer produces in one hour were to be printed (500 on one page, 1000
on one sheet, 1000 sheets 10 cm high) they would form a pile that reaches from the
earth to the sun and back. With increasing speed, problems that are dealt with become
larger and larger. Extending the word size cannot keep up with the tremendous in-
crease in computer speed. Computing that is continually and greatly speeded up calls
conventional computing into question. Even with quadruple and extended precision
arithmetic the computer remains an experimental tool. The capability of a computer
should not just be judged by the number of operations it can perform in a certain
amount of time without asking whether the computed result is correct. It should also
be asked how fast a computer can compute correctly to 3, 5, 10 or 15 decimal places.
If the question were asked that way, it would very soon lead to better computers.
Mathematical methods that give an answer to this question are available. Computers,
however, are not built in a way that allows these methods to be used effectively.

Computer arithmetic must move strongly towards more reliability in computation.
Instead of the computer being merely a fast calculating tool it must be developed into
a scientific instrument of mathematics. Two simple steps in this direction would have
great effect. They are both simple and practical:

I. fast hardware support for (extended') interval arithmetic and

II. afast and exact multiply and accumulate operation or, what is equivalent to it, an
exact scalar product.

These two steps together with basic computer arithmetic comprise what is here
called advanced computer arithmetic. Fast hardware circutries for 1. and II. are de-
veloped in Chapters 7 and 8, respectively. This additional computational capability is
gained at very modest hardware cost. Besides being more accurate the new computer
operations greatly speed up computation. 1. and II., of course, can be used to execute
and speed up the operations of basic computer arithmetic. This would boost both the
speed of a computation and the accuracy of its result.

'including division by an interval that includes zero
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Advanced computer arithmetic opens the door to very many additional applications.
All these applications are extremely fast. I. and II. in particular are basic ingredients
of what is called validated numerics or verified computing.

This book has three parts. Part 1, of four chapters, deals with the theory of computer
arithmetic, while Part 2, also of four chapters, treats the implementation of arithmetic
on computers. Part 3, of one chapter, illustrates by a few sample applications how
advanced computer arithmetic can be used to compute highly accurate and mathemat-
ically verified results.

Part 1: The implementation of semimorphic operations on computers requires the
establishment of various isomorphisms between different definitions of arithmetic op-
erations on the computer. These isomorphisms are to be established in the mathemat-
ical spaces in which the actual computer operations operate. This requires a careful
study of the structure of these spaces. Their properties are defined as invariants with
respect to semimorphisms. These concepts are developed in Part 1 of the book. Part 1
is organized along the lines of its second antecedent. However it differs in many de-
tails from the earlier one, details that spring from advances in computer technology,
and many derivations and proofs have been reorganized and simplified.

Part 2: In Part 2 of the book, basic ideas for the implementation of advanced com-
puter arithmetic are discussed under the assumption that the data are floating-point
numbers. Algorithms and circuits are developed which realize the semimorphic oper-
ations in the various spaces mentioned above. The result is an arithmetic with many
desirable properties, such as high speed, optimal accuracy, theoretical describability,
closedness of the theory, and ease of use.

Chapters 5 and 6 consider the implementation of elementary floating-point arith-
metic on the computer for a large class of roundings. A particular section of Chapter 5
comments on the IEEE floating-point arithmetic standard. The final section of Chap-
ter 6 contains a brief discussion of all arithmetic operations defined in the product sets
mentioned above as well as between these sets. The objective here is to summarize
the definition of these operations and to point out that they all can be performed as
soon as an exact scalar product is available in addition to the operations that have
been discussed in Chapters 5 and 6.

Floating-point operations with directed roundings are basic ingredients of interval
arithmetic. But with their isolated use in software interval arithmetic is too slow to
be widely accepted in the scientific computing community. Chapter 7 shows, in par-
ticular, that with very simple circuitry interval arithmetic can be made practically as
fast as elementary floating-point arithmetic. To enable high speed, the case selections
for interval multiplication (9 cases) and division (14 cases including division by an
interval that includes zero) are done in hardware where they can be chosen without
any time penalty. The lower bound of the result is computed with rounding down-
wards and the upper bound with rounding upwards by parallel units simultaneously.
The rounding mode needs to be an integral part of the arithmetic operation. Also the
basic comparisons for intervals together with the corresponding lattice operations and
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the result selection in more complicated cases of multiplication and division are done
in hardware. There they are executed by parallel units simultaneously. The circuits
described in this chapter show that with modest additional hardware costs interval
arithmetic can be made almost as fast as simple floating-point arithmetic. Such high
speed cannot be obtained just by running many elementary floating-point arithmetic
processors in parallel.

A basic requirement of basic computer arithmetic is that all computer approxima-
tions of arithmetic in the usual product spaces should deliver a result that differs from
the correct result by at most one rounding. This requires scalar products of floating-
point vectors to be computed with but a single rounding. The question of how a scalar
product with a single rounding can be computed just using elementary floating-point
arithmetic has been carefully studied in the literature. A good summary and what is
probably the fastest solution is given in [456] and [531]. However, we do not follow
this line here. No software simulation can compete with a simple and direct hardware
solution.

The most natural way to accumulate numbers is fixed-point accumulation. It is
simple, error free and fast. In Chapter 8 circuitry for exact computation of the scalar
product of two floating-point vectors is developed for different kinds of computers. To
make the new capability conveniently available to the user a new data format called
complete is used together with a few simple arithmetic operations associated with each
floating-point format. Complete arithmetic computes all scalar products of floating-
point vectors exactly. The result of complete arithmetic is always exact; it is complete,
not truncated. Not a single bit is lost. A variable of type complete is a fixed-point
word wide enough to allow exact accumulation (continued summation) of floating-
point numbers and of simple products of such numbers.

If register space for the complete format is available complete arithmetic is very
very fast. The arithmetic needed to perform complete arithmetic is not much different
from what is available in a conventional CPU. In the case of the IEEE double precision
format a complete register consists of about 1/2 K bytes. Straightforward pipelining
leads to very fast and simple circuits. The process is at least as fast as any conventional
way of accumulating the products including the so-called partial sum technique on
existing vector processors which alters the sequence of the summands and causes
errors beyond the usual floating-point errors.

Complete arithmetic opens a large field of new applications. An exact scalar prod-
uct rounded into a floating-point number or a floating-point interval serves as build-
ing block for semimorphic operations in the product spaces mentioned above. Fast
multiple precision floating-point and multiple precision interval arithmetic are other
important applications. All these applications are very very fast. Complete arithmetic
is an instrumental addition to floating-point arithmetic. In many instances it allows
recovery of information that has been lost during a preceding pure floating-point com-
putation.
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Because of the many applications of the hardware support for interval arithmetic
developed in Chapter 7, and of the exact scalar product developed in Chapter 8, these
two modules of advanced computer arithmetic emerge as its central components.

Fast hardware support for all operations of advanced computer arithmetic is a
Jundamental and overdue extension of elementary floating-point arithmetic. Arith-
metic operations which can be performed correctly with very high speed and at low
cost should never just be done approximately or simulated by slow software. The mi-
nor additional hardware cost allows their realization on every CPU. The arithmetic
operations of advanced computer arithmetic transform the computer from a fast cal-
culating tool into a mathematical instrument.

Part 3: Mathematical analysis has provided algorithms that deliver highly accurate
and completely verified results. Part 3 of the book goes over some examples. Such
algorithms are not widely used in the scientific computing community because they
are very slow when the underlying arithmetic has to be carried out on conventional
processors.

The first section describes some basic properties of interval mathematics and shows
how these can be used to compute the range of a function’s values. Used with au-
tomatic differentiation, these techniques lead to powerful and rigorous methods for
global optimization. The following section then deals with differentiation arithmetic
or automatic differentiation. Values or enclosures of derivatives are computed directly
from numbers or intervals, avoiding the use of a formal expression for the derivative
of the function. Evaluation of a function for an interval X delivers a superset of the
function’s values over X. This overestimation tends to zero with the width of the
interval X. Thus for small intervals interval evaluation of a function practically de-
livers the range of the functions’s values. Many numerical methods proceed in small
steps. So this property together with differentiation arithmetic to compute enclosures
of derivatives is the key technique for validated numerical computation of integrals
and for solution of differential equations, and for'many other applications.

Newton’s method is considered in two sections of Chapter 9. It attains its ultimate
elegance and power in the extended interval Newton method, which is globally con-
vergent and computes all zeros of a function in a given domain. The key to achieving
these fascinating properties is division by an interval that includes zero.

The basic ideas needed for verified solution of systems of linear equations are de-
veloped in Section 9.5. Highly accurate bounds for a solution can be computed in
a way that proves the existence and uniqueness of the solution within these bounds.
Mathematical fixed-point theorems, interval arithmetic combined with defect correc-
tion or iterative refinement techniques using complete arithmetic are basic tools for
achieving these results.

In Section 9.6 a method is developed that allows highly accurate and guaranteed
evaluation of polynomials and of other arithmetic expressions.
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Section 9.7 finally shows how fast multiple precision arithmetic and multiple pre-
cision interval arithmetic can be provided using complete arithmetic and other tools
developed in the book.

Of course, the computer may often have to work harder to produce verified results,
but the mathematical certainty makes it worthwhile. After all, the step from assembler
to higher programming languages or the use of convenient operating systems also
consumes a lot of computing power and nobody complains about it since it greatly
enlarges the safety and reliability of the computation.

Computing is being continually and greatly speeded up. An avalanche of num-
bers is produced by a teraflops or petaflops computer (1 teraflops corresponds to 10"2
floating-point operations per second). Fast computers are often used for safety critical
applications. Severe, expensive, and tragic accidents can occur if the eigenfrequencies
of a large electricity generator, for instance, are erroneously computed, or if a nuclear
explosion is incorrectly simulated. Floating-point operations are inherently inexact.
It is this inexactness at very high speed that calls conventional computing, just using
naive floating-point arithmetic, into question.

This book can, of course, be used as a textbook for lectures on the subject of com-
puter arithmetic. If one is interested only in the more practical aspects of implement-
ing arithmetic on computers, Part 2, with acceptance a priori of some results of Part 1,
is also suitable as a basis for lectures. Part 3 can be used as an introduction to verified
computing.

The second previous book was jointly written with Willard L. Miranker. On this
occasion Miranker was very busy with other studies and could not take part, so this
new book has been compiled solely by the other author and he takes full responsibility
for its text. However, there are contributions and formulations here which go back to
Miranker without being explicitly marked as such. I deeply thank Willard for his
collaboration on the earlier book as well as on other topics, and for a long friendship.
Contact with him was always very inspiring for me and for my Institute.

I would like to thank all former collaborators at my Institute. Many of them have
contributed to the contents of this book, have realized advanced computer arithmetic
in software on different platforms and in hardware in different technologies, have
embedded advanced computer arithmetic into programming languages and imple-
mented corresponding compilers, developed problem solving routines for standard
problems of numerical analysis, or applied the new arithmetic to critical problems in
the sciences. Among these colleagues are: Christian Ullrich, Edgar Kaucher, Rudi
Klatte, Gerd Bohlender, Dalcidio M. Claudio, Kurt Griiner, Jiirgen Wolff von Guden-
berg, Reinhard Kirchner, Michael Neaga, Siegfried M. Rump, Harald Béhm, Thomas
Teufel, Klaus Braune, Walter Kramer, Frithjof Blomquist, Michael Metzger, Giinter
Schumacher, Rainer Kelch, Wolfram Klein, Wolfgang V. Walter, Hans-Christoph
Fischer, Rudolf Lohner, Andreas Knofel, Lutz Schmidt, Christian Lawo, Alexan-
der Davidenkoff, Dietmar Ratz, Rolf Hammer, Dimitri Shiriaev, Manfred Schlett,
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Matthias Hocks, Peter Schramm, Ulrike Storck, Christian Baumhof, Andreas Wi-
ethoff, Peter Januschke, Chin Yun Chen, Axel Facius, Stefan Dietrich, and Norbert
Bierlox. For their contributions I refer to the bibliograhy.

I owe particular thanks to Axel Facius, to Gerd Bohlender, and to Klaus Braune.
Axel Facius keyed in and laid out the entire manuscript in IXIEX and he did most of
the drawings. Drawings were also done by Gerd Bohlender. Klaus Braune helped to
prepare the final version of the text. I thank Bo Einarsson for proofreading the book.
I also thank my colleagues at the institute Gotz Alefeld and Willy Dorfler for their
support of the book project.

I gratefully acknowledge the help of Neville Holmes who went carefully through
great parts of the manuscript, sending back corrections and suggestions that led to
many improvements. His help was indeed vital for the completion of the book.

The Karlsruher Universititsgesellschaft supported typing the first draft of the
manuscript.

Karlsruhe, November 2007 Ulrich W. Kulisch
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