Sang M. Lee

Introduction to

M

ANAGEMENT SCIENCE

INTRODUCTION TO MANAGEMENT SCIENCE

Sang M. Lee University of Nebraska

The Dryden Press

Chicago New York Philadelphia San Francisco Montreal Toronto London Sydney Tokyo Mexico City Rio de Janeiro Madrid

Acquisitions Editor Anne Elizabeth Smith Developmental Editor Paul D. Psilos Project Editor Kathleen Gleason Design Director Alan Wendt Production Manager Mary Jarvis Managing Editor Jane Perkins

Text and cover design by Alan Wendt Copy editing by Mary Englehart Indexing by Ann Heinrichs

Copyright © 1983 CBS College Publishing All rights reserved

Address orders to: 383 Madison Avenue New York, New York 10017

Address editorial correspondence to: One Salt Creek Lane Hinsdale, Illinois 60521

Library of Congress Catalog Card Number: 82–72177 ISBN 0-03-059183-X Printed in the United States of America 345-016-987654321

CBS College Publishing The Dryden Press Holt, Rinehart and Winston Saunders College Publishing

To Tosca and Amy

THE DRYDEN PRESS SERIES IN MANAGEMENT ARTHUR G. BEDEIAN, CONSULTING EDITOR

Albanese and Van Fleet

Organizational Behavior: A Managerial Viewpoint

Bedeian

Organizations: Theory and Analysis

Bedeian and Glueck

Management, Third Edition

Boone and Kurtz

Contemporary Business, Third Edition

Chen and McGarrah

Productivity Management:

Text and Cases

Gaither

Production and Operations Management:

A Problem-Solving and Decision-Making Approach

Gellerman

The Management of Human Resources

Grad, Glans, Holstein, Meyers, and Schmidt

Management Systems: A Guide to the Study and Design

of Information Systems, Second Edition

Higgins

Organizational Policy and Strategic Management:

Text and Cases, Second Edition

Hodgetts

Management Fundamentals

Hodgetts

Management: Theory, Process, and Practice, Third Edition

Hodgetts

Modern Human Relations

Holley and Jennings

Personnel Management: Functions and Issues

Holley and Jennings

The Labor Relations Process

Hollingsworth and Hand

A Guide to Small Business Management: Text and Cases

Huseman, Lahiff, and Hatfield

Business Communication: Strategies and Skills

Huseman, Lahiff, and Hatfield

Readings in Business Communication

Jauch, Coltrin, Bedeian, and Glueck

The Managerial Experience: Cases, Exercises, and Readings,

Third Edition

Karmel

Point and Counterpoint in Organizational Behavior

Lindauer

Communicating in Business, Second Edition

McFarlan, Nolan, and Norton Information Systems Administration

Maverson

Shoptalk: Foundations of Managerial Communication

Miner

Theories of Organizational Behavior

Minor

Theories of Organizational Structure and Process

Paine and Anderson

Strategic Management

Paine and Naumes

Organizational Strategy and Policy: Text and Cases,

Third Edition

Penrose

Applications in Business Communication

Ray and Eison

Supervision

Robinson

International Business Management, Second Edition

Smith

Management System: Analysis and Applications

Stone

Understanding Personnel Management

Viole

Organizations in a Changing Society:

Administration and Human Values

THE DRYDEN PRESS SERIES IN QUANTITATIVE METHODS

Bradley and South

Introductory Statistics for Business and Economics

Gulati

A Short Course in Calculus

Lee

Introduction to Management Science

Trueman

Ouantitative Methods for Decision Making in Business

THE DRYDEN PRESS SERIES IN BUSINESS LAW

Howell, Henley, and Allison

Business Law: Text and Cases, Second Edition

Howell, Henley, and Allison

Business Law: Text and Cases, Second Alternate Edition

比为试读,需要完整PDF请访问: www.ertongbook.com

PREFACE

Management science is concerned with the application of scientific approaches to improve management performance. In management science, special emphasis is placed on the systematic analysis of the nature of the problem, decision environment, objectives of the organization, judgment of the decision maker, and available decision alternatives. Thus, the field of management science encompasses a host of quantitative methodologies as well as behavioral aspects of decision making. The purpose of this text is to provide the student with a comprehensive coverage of how management science concepts and approaches can be applied to improve management decision making.

Management science is no longer a new field of study. Today, such terms as cost/benefit analysis, simulation, system optimization, modeling, and data base management are accepted as standard vocabulary. Management science concepts are widely known not only to businessmen and management scientists, but also to government planners, military analysts, space scientists, regional planners, health care administrators, and many other professionals. As the use of management science becomes broader, there is a greater need for a good introductory text. This book is such a text. It explains, in a simple manner with a minimum amount of mathematics, how to formulate management decision problems as models, how to solve them by using management science techniques, and then how to implement the solution results in the actual problem situation.

As managerial problems become more complex, management science tools are becoming more sophisticated. Consequently, great emphasis has been placed on the model solution, as if the modeling work is the end product in itself. An overwhelming emphasis on solution techniques often results in the neglect of other important issues such as the decision environment, the nature of the problem, the multiple organizational objectives, the decision maker's judgment, and the implementation of the model results. This book provides a comprehensive discussion of all of the major factors necessary for successful management science implementation. The emphasis throughout this book, is placed on the managerial perspective—improving the organizational performance through systematic analysis.

This book is directed toward the undergraduate student of business administration and the social sciences who has had no previous exposure to management science. A unique feature of the book is that it provides a highly readable yet comprehensive introduction to the standard topics of the first course in quantitative techniques, a course required in most schools of business.

The emphasis of the book is on the translation of mathematical modeling concepts into a presentation that is palatable to the undergraduate student of business with a minimum of mathematical background. Many topics are introduced by presenting realistic, practical examples in the form of casettes (small cases). Difficult techniques are presented within the framework of working examples, stressing an intuitive understanding of concepts rather than mathematical proofs.

In summary, Introduction to Management Science is all of the following:

- 1. A comprehensive yet easily readable presentation of various management science techniques.
- **2.** An application orientation to realistic problems through the emphasis of the model formulation aspect of management science. Most chapters present interesting and realistic casettes as a means of demonstrating the model formulation, the solution process, and the interpretation of model results.
- 3. An up-to-date presentation of multiple objective decision making concepts.
- **4.** A guide to the analysis of complex problems through the inclusion of casettes, computer-based solutions, numerous exercise problems, and a comprehensive *Study Guide*.
- **5.** A managerial perspective of management science—problem formulation, analysis of the decision environment, multiple organizational objectives, and issues involved in implementation of model results.

A Note to the Student

Numerous books have been published in the area of management science, operations research, and quantitative methods. Most of these books, including several by this author, can be classified into two broad categories: (1) basic surveys that present a cookbook approach of management science techniques, and (2) comprehensive theoretical texts that represent the mathematical foundations of various quantitative tools. Few books have presented a comprehensive, introductory, application-oriented, funto-read, and up-to-date treatment of management science concepts. This book is intended to be such a book.

A major objective of this text is to avoid overwhelming you with mathematics. Rather, the purpose is to provide you with an opportunity to familiarize yourself with a wide variety of model building situations so that you come away from the introductory course with an ability to conceptualize the modeling approach in a managerial perspective. I attempt to achieve this purpose through a sound but interesting presentation of the underlying concepts through realistic casettes (small cases) and stories. I try to make the learning a fun experience for you.

Management science is not simply a collection of quantitative tools. It is a way of thinking and a philosophy of logical problem solving in any decision environment. By no means, after studying this book, should you come away with the idea that you

now have a set of tools that can be simply plugged into the appropriate situations without carefully considering the assumptions of the models and the realities of the decision environments.

All of the techniques presented in this text are selected on the basis of their track record of real-world applications. Although most of the examples and casettes presented are relatively simple as compared to real-world problems, once you master these examples you will be much better prepared to tackle complex problems. Many real-world application examples are provided in the text to give you a general idea about the types of problems in which different techniques can be applied. The most important purpose of this book is to help you sharpen your conceptual skills in dealing with any decision problem. These skills will be invaluable throughout your career, whatever it may eventually be.

A Note to the Instructor

In writing this text, I had three basic objectives: (1) an emphasis on the managerial perspective—the basic role of management science is to improve organizational performance, (2) a comprehensive and interesting discussion of various management science topics through casettes, and (3) an application-oriented text presenting many real-world application examples and discussing the factors that are important for successful implementation of management science.

On the basis of two criteria, I selected those topics that are most appropriate for an introductory course in management science: (1) the current track record of the particular technique for solving real-world problems, and (2) the capacity of the technique for exposing the student to a variety of different modeling situations. The central theme of the book, which is carried through all of the chapters, stresses the concept of modeling in general. Thus, each chapter presents the identification of the model objective, the decision variables, the model parameters, the underlying assumptions of the model, the decision environment, the implementation of the solution, and real-world applications.

This book is organized so that the most frequently covered topics (most popular topics), such as linear programming and related topics, are presented first. Although most of the chapters present topics that are independent of other chapters, the topic of linear programming is presented in three chapters, ranging from introductory to more advanced material. Each chapter has the following aids to the student:

- 1. A brief introduction stating the purpose of the chapter.
- 2. A list of the learning objectives for the chapter.
- 3. Marginal terms to indicate key concepts and topics.
- 4. A brief summary of the topics covered in the chapter.

This text has over 50 casettes in the text and over 400 assignment problems at the ends of chapters. In addition, over 160 other problems and cases are presented in

the *Study Guide* and the *Instructor's Manual*. Also, the text presents summaries of 17 real-world applications of management science. The *Study Guide* presents a list of suggestions for studying management science, a summary of the important concepts in each chapter, solutions to all of the odd-numbered assignment problems, additional problems and cases to prepare for tests, and a list of journals that are useful in studying the actual applications of management science. The *Instructor's Manual* presents solutions to all of the assignment problems, a suggested examination format with problems, discussion of some advanced topics that are not included in the text, suggested syllabi of the course at different levels, and the interactive linear programming and goal programming programs, as well as solutions of selected problems by the microcomputer. The Transparency Master for various figures and tables presented in the text will also be available from the publisher. The text and these accompanying materials present a comprehensive instructional support package for an introductory management science course.

Acknowledgments

In writing this book, I have relied heavily on the suggestions and criticisms of my colleagues and students. I have benefited greatly from discussion with my friends Fred Luthans, Lester Digman, and Gary Schwendiman at the University of Nebraska. I would like to thank my colleagues Eugene Kaczka (Clarkson), Patrick G. Mc-Keown (University of Georgia), Spyros Economides (California State University-Hayward), James H. Patterson (University of Missouri), Bruce K. Blaylock (Virginia Polytechnique Institute), Charles J. Campbell (Memphis State University), A. Ravindran (University of Oklahoma), David L. Olson (Texas A&M), C. S. Kim (Kansas State University), and J. P. Shim (University of Wisconsin-La Crosse), who reviewed the entire manuscript several times. Special thanks go to my students S. H. Lee, Bruce Speck, A. Abdolhossein, Lucinda Galusha, and M. Abdel-Wahab at the University of Nebraska. They were indispensable in polishing the book through revisions and in preparing the Instructor's Manual and Study Guide. I am very grateful to my office staff: Joyce Anderson, Jane Chrastil, Cindy LeGrande, and Angela Sullivan for their expert word-processing skills. A tremendous thanks is expressed to the real professionals at The Dryden Press: Anne E. Smith, Senior Editor, Paul Psilos, Developmental Editor of this book and a good friend, Kathy Gleason, Project Editor, and Mary Englehart, Copy Editor, for their superb editorial work. Also, I express my thanks to Ada Chen at Boardworks for her beautiful art work. Finally, I could never have completed this book without the support of my family. I dedicate this book to my daughters Tosca and Amy, who made this book late by only several months.

Sang M. Lee

CONTENTS

E8461434

CHAPTER 1 THE ROLE OF MANAGEMENT SCIENCE

What's It All About? 1

Management and Decision Making 2

Rationality in Decision Making 3

The Scientific Method 5

The Concept of Economic Person 7

Management Science and the Systems Approach 7

How Managers Actually Make Decisions 9

The Role of Management Science 11

Practical Application of Management Science 14

Building a Proper Perspective 15

Summary 17

CHAPTER 2 MODELING IN MANAGEMENT SCIENCE

Introduction to Modeling 19

What Is a Model? 20

Model Classification 20

Management Science Modeling 21

The Model Structure 22

The Model Components 23

Relationships within the Model 25

Decision Making Environment 26

Decision Making under Certainty 26

Decision Making under Risk 27

Decision Making under Uncertainty 28

Decision Making under Conflict 28

The Process of Management Science Modeling 29

Formulation of the Problem 29

Development of the Model 31

Validation of the Model 31

Solution of the Model 32

Implementation of the Solution 32

Examples of Management Science Models 33

Casette 2.1 Production Scheduling at Sanzo, Ltd. 33

Casette 2.2 Transportation Problem of J. R. Distributors, Inc. 35

Casette 2.3 Inventory Problem of the Midland Utilities 37
Casette 2.4 Queuing Problem of the Checker Taxi Company 37
Keeping a Proper Perspective about Models 38

CHAPTER 3 INTRODUCTION TO LINEAR PROGRAMMING

Basic Concepts of Linear Programming 41

A Brief History 42

Basic Requirements 42

Application Areas 44

Model Formulation 46

Casette 3.1 Product Mix Problem of Galaxy Electronics 46

Casette 3.2 Diet Problem of the Freshmen Orientation Program 49

Casette 3.3 Vehicle Purchasing Problem of UR#1 Limousine Service Co. 50

Casette 3.4 Manpower Scheduling Problem of Leon's Groceries 53

Graphical Solution Method 58

Some Basics 58

A Simple Maximization Problem 63

A Simple Minimization Problem 75

A Problem with an Equality Constraint 77

Simple Sensitivity Analysis 78

Change in Contribution Rates 80

Change in Technological Coefficients 81

Change in the Right-Hand-Side Value 81

Examples of Real-World Applications of Linear Programming 84

Crude Oil Sales 84

A Facilities Location Model 85

Assigning Students to Schools 85

Summary 86

CHAPTER 4 SIMPLEX METHOD OF LINEAR PROGRAMMING

The Simplex Method 95

The Simplex Solution Procedure 97

Example 4.1 Candex Camera Works, Ltd. 97

Step 1: Develop the Simplex Model 98

Step 2: Determine the Initial Solution 100

Step 3: Test the Optimality 106

Step 4: Identify the Incoming Variable 106

Step 5: Determine the Outgoing Variable 107

Step 6: Develop a New Solution 109

Step 7: Test the Optimality and Repeat the Procedure 114

Step 8: Interpret the Optimum Solution 116

Summary of the Simplex Solution Procedure 119

Simplex Solution of a Problem with Mixed Constraints 120

Example 4.2 A Maximization Problem with Mixed Constraints 120

Simplex Solution of a Minimization Problem 128

Example 4.3 Diet Problem of the Freshmen Orientation Program 128

Some Unique Situations 132

Tie in Selecting the Incoming Variable 132

Tie in Selecting the Outgoing Variable (Degeneracy) 132
Multiple Optimum Solutions 133
Negative Right-Hand-Side Value 134
An Infeasible Value 136
An Unbounded Problem 136
Computer-Based Solution of Linear Programming 139
Summary 139

CHAPTER 5 ADDITIONAL TOPICS OF LINEAR PROGRAMMING

Duality in Linear Programming 149

The Primal-Dual Relationship 150

Example 5.1 Candex Camera Works, Ltd. 150

Interpretation of the Dual Model 151

The Dual of a Problem with Mixed Constraints 154

Example 5.2 154

Dual Simplex Method 155

Example 5.3 Diet Problem of the Freshmen Orientation Program 156

Sensitivity Analysis 158

Casette 5.1 Drink Blending Problem of Alpha Beta Sigma 159

Changes in the Unit Contribution Rates 161

Changes in the Available Resources 166

Changes in the Technological Coefficients 170

Addition of a New Constraint 173

Addition of a New Variable 176

Integer Programming 179

The Rounding Approach 180

The Graphical Approach 181

Example 5.4 Creative Designer Jeans, Inc. 181

The Branch and Bound Method 183

Real-World Applications of Integer Programming 187

Other Topics in Advanced Linear Programming 188

Linear Programming under Uncertainty 188

Linear Programming and Game Theory 188

Multiple Objective Linear Programming 189

Parametric Programming 189

Summary 190

CHAPTER 6 GOAL PROGRAMMING

The Concept of Goal Programming 197

Application Areas of Goal Programming 199

Model Formulation 200

A Single Objective Problem 201

Casette 6.1 Century Electronics, Inc. 201

A Multiple Objective Problem 205

Casette 6.2 Modern Fashions, Inc. 206

A Multiple Objective–Multiple Subgoal Problem 208

Casette 6.3 Big Sound Records, Inc. 208

A Problem with System Constraints and Multiple Objectives 213

Casette 6.4 Bleeker College Foundation 213 The Graphical Method of Goal Programming 217 Example 6.1 An Electronics Manufacturing Firm 217 Example 6.2 Jeans Galore, Inc. 222 The Modified Simplex Method of Goal Programming 227 Developing the Initial Simplex Tableau 228 The First Iteration 231 The Second Iteration 232 The Optimum Solution 232 Analysis of Goal Conflicts 234 Some Unique Situations in Goal Programming Negative Right-Hand-Side Value 236 A Tie in Selecting the Pivot Column 236 A Tie in Selecting the Pivot Row 236 Multiple Optimum Solutions 236 An Unbounded Problem 237 An Infeasible Problem 237 Real-World Applications of Goal Programming 237 An Application of Goal Programming at Lord Corporation 237 Ballistic Missile Defense Technology Management with Goal Programming 238 Formulating Blood Rotation Policies with Goal Programming 238

CHAPTER 7 THE TRANSPORTATION PROBLEM

Summary 239

The Nature of the Transportation Problem 249

Computer-Based Analysis of Goal Programming 239

Casette 7.1 Gulf Coast Oil Company, Inc. 250

The Balanced Transportation Problem 252

Developing an Initial Solution 254

Determining the Optimum Solution 263

The Unbalanced Transportation Problem 280

Demand Exceeds Supply 280

Supply Exceeds Demand 282

Some Unique Situations 282

Degeneracy 282

Prohibited or Impossible Transportation Routes 286

Multiple Optimum Solutions 286 The Transshipment Problem 287

The Transportation Problem with Multiple Objectives 288

Real-World Applications 288

Determination of Electric Transmission Fees 289 Summary 290

CHAPTER 8 THE ASSIGNMENT PROBLEM

The Nature of the Assignment Problem 300

Casette 8.1 Martha Weinstein Cosmetics, Inc. 300

The Complete Enumeration Method 301

A Linear Programming Model for the Assignment Problem 302

The Transportation Approach to the Assignment Problem 303 The Hungarian Method of Assignment 304

The Opportunity Cost Table 305

Analysis of Optimum Assignment Feasibility 307

The Revised Opportunity Cost Table 309

A Maximization Assignment Problem 312

Casette 8.2 The Neighborhood Team-Policing Assignment 312

Some Unique Situations 316

Unequal Rows and Columns 316

Casette 8.3 Mississippi Barge Transportation, Inc. 316

Impossible (or Prohibited) Assignments 318

Multiple Optimum Solutions 319

Multiple Objectives 319

The Branch and Bound Approach 319

Summary 327

CHAPTER 9 DECISION THEORY

Decision Making under Risk 335

The Expected Payoff Criterion 338

Casette 9.1 Friendly Investment Club 338

The Expected Loss Criterion 340

Casette 9.2 The State Fair Concession Problem 340

Simple Inventory Problems under Risk 342

Casette 9.3 New England Fish Market 342

Conditional Profits 343

Expected Profits 344

Expected Profit under Certainty 346

Conditional Loss 347

Expected Loss 348

Value of Perfect Information 349

Incremental Analysis 349

Stocking Decision for the First Unit 350

Stocking Decision for the Second Unit 350

Stocking Decision for the ith Unit 351

Analysis of Salvage Value 354

Analysis of Goodwill Cost 355

Decision Making under Uncertainty 357

Casette 9.4 Sakura Motors Corporation (SMC), USA 358

Decision Making with Partial Probabilities 358

The Equal Probabilities (Laplace) Criterion 360

The Maximin (Wald) Criterion 361

The Maximax Criterion 361

The Dominance Criterion 362

The Hurwicz Criterion 362

The Minimax (Regret) Criterion 365

Summary of Decision Making Criteria 366

Subjective Probabilities 366

Bayes Decision Rule 367

Example 9.1 Centennial Precision Works, Inc. 367
Utility Analysis 369
Multiple Objectives 370
Decision Trees 371
Casette 9.5 Mostly Nuts of Georgia, Inc. 373
Real-World Applications 377
Determining Hotel Reservation Policy 377
Selecting Business Targets 378
Summary 379

CHAPTER 10 PROJECT PLANNING WITH PERT AND CPM

Characteristics of the Project Planning Problem 391

The Gantt Chart 393

History of PERT and CPM 394

Developing Project Networks 395

Transforming a Gantt Chart into a Network 397

Dummy Activities 397

Identifying the Critical Path 398

Example 10.1 A Simple Network 398

The Earliest Expected time (ET) 398

The Latest Allowable Time (LT) 401

The Critical Path 401

Activity Scheduling and Slack 403

Casette 10.1 Schmidt Construction, Inc. 406

CPM Time and Cost Trade-Offs 409

Example 10.2 Project Crashing 411

Estimating Activity Times in PERT 417

Casette 10.2 Dino's Inc. of California 418

Applying Computers to Project Planning 422

Real-World Applications 422

Application of PERT/CPM in Government 423

Summary 423

CHAPTER 11 INVENTORY MODELS

Characteristics of Inventory Systems 432

Basic Inventory Decisions 434

Holding Costs 434

Ordering Costs 434

Shortage Costs 435

Economic Order Quantity (EOQ) Model 435

EOQ Model Assumptions 435

EOQ Model Symbols 436

EOO Model Formulation 437

Casette 11.1 Television Technology, Inc. 439

Modifications in the EOQ Model 446

Holding Cost as a Proportion of Value 446

Time Horizon as a Model Variable 436 Reorder Point 447 Extensions of the EOO Model 448 Noninstantaneous Receipt Model 448 Economic Lot-Size (ELS) Model 451 Casette 11.2 Sunergy Products, Inc. 453 Quantity Discount Model 456 Casette 11.3 Smith Autoparts Company 457 Inventory Model with Planned Shortages 458 Casette 11.4 American Rubber Products, Inc. 462 The Inventory Model under Uncertainty 464 Inventory Model with Safety Stocks 464 Casette 11.5 Bold Bodybuilders, Inc. 467 Inventory Model with Uncertain Demand and Lead Time 469 Casette 11.6 Modern Office Equipment, Inc. 472 Analytical vs. Simulation Approach 480 Material Requirements Planning (MRP) and Kanban 480 Real-World Applications 481 Summary 482

CHAPTER 12 WAITING LINE (QUEUING) MODELS

The Waiting Line Process 492

Components of a Waiting Line System 494
Basic Structures of Waiting Line Systems 496
Casette 12.1 Student Union Hairstyling Salon 496

Waiting Line Decision Problems 498

Service Costs 499
Waiting Costs 500
The Total System Cost 501
Example 12.1 A Port Union

Example 12.1 A Port Unloading Problem 501

Assumptions for Waiting Line Models 502

Arrival Distribution 503
Service Time Distribution 506

Number of Servers 508 Queue Discipline 509

Infinite vs. Finite Waiting Line Length 510

Maximum Population in the System 510

Waiting Line Models 510

(D/D/1): $(FCFS/\infty/\infty)$ 511

Casette 12.2 The Titantic Queue 511

(M/M/1): $(FCFS/\infty/\infty)$ 512

Casette 12.3 Operation Thule 514

 $(M/GI/1):(FCFS/\infty/\infty)$ 516

Casette 12.4 Operation Thule—Pump X 517

(M/D/1): $(FCFS/\infty/\infty)$ 518

Casette 12.5 Operation Thule—Pump Y 519

 $(M/E_k/1)$: $(FCFS/\infty/\infty)$ 520

Casette 12.6 Operation Thule—Pump Z 520
(M/M/1):(FCFS/m/∞) 521
Casette 12.7 The Iceland Connection 522
(M/M/1):(FCFS/∞/m) 523
Casette 12.8 End of Open-Sea Season at Thule 523
(M/M/s):(FCFS/∞/∞) 524
Casette 12.9 Planning for the New Season at Thule 525
Simulation of Waiting Line Systems 527
Real-World Applications 527
Machine Manning Schedule 527
Bank Teller Staff Level Determination 529
Summary 530

CHAPTER 13 DYNAMIC PROGRAMMING

The Basic Nature of Dynamic Programming 537

Segmentation and Sequential Decisions 538

The Backward Approach 538

Casette 13.1 The Washington, D.C. Conference 539

The Basic Features of Dynamic Programming 539

The Complete Enumeration Approach 542

Solution by Dynamic Programming 543

The Structure of Dynamic Programming 544

Casette 13.2 Downjohn Pharmaceutical Corporation 547

Casette 13.3 Ace Manufacturing Company 553

Probabilistic Dynamic Programming 559

Real-World Applications 559

Dynamic Programming for Ship Fleet Management 559

Mine-Mill Production Scheduling 560

Summary 560

CHAPTER 14 SIMULATION

Characteristics of Simulation Models 575

The Process of Simulation 576

Simulation of Stochastic Models 579

The Monte Carlo Process 579

Casette 14.1 Machine Repair Problem of the Milwaukee Construction Company 583

Generating Random Numbers 592

Table of Random Numbers 592

Mid-Square Method 592

Mid-Product Method 593

Random Number Transformation 593

Casette 14.2 An Inventory Problem at Peach Computers, Ing. 594

Optimization in Simulation 601

The Nature of Simulation 570
What is Simulation? 570
Why Simulate? 572