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FOREWORD

Circular cylindrical components have been extensively used in various mechanical and
structural systems. Frequently, these components are submerged in flow, and may also
convey or contain fluid. Therefore, they are susceptible to flow-induced vibration. De-
pending on the arrangement of these system components, the flow field, and other related
parameters, systems consisting of circular cylindrical components may be subjected to
small subcritical vibration as well as to large-amplitude fluidelastic instability. In the design
of these components, the response to flow excitation is needed to ensure that the design
life of the system will not deleteriously be affected by flow-induced vibration.

The purpose of this symposium is to provide a forum for the exchange of information
among researchers and designers working in this field, as well as to contribute to the
state of the art. Sixteen papers are presented covering a wide range of topics: single- and
two-phase flows, axial and cross flow, single and multiple cylinders, flow-induced and
acoustic excitations, subcritical vibration, dynamic instability, flow-field characterization,
and structural response. These papers may be grouped in the following four categories.

1. Fluid-force Characterization for Circular Cylinders in Fluid

Fluid forces acting on a cylinder may be divided into fluid excitation forces, which
are independent of structural motion, and motion-dependent fluid forces, which are
functions of structural acceleration, velocity, and displacement. Four papers in this group
characterize the fluid forces under different conditions. Hara and Kohgo report on an
experimental study of a tube vibrating in an air-water mixture flow. Motion-dependent
fluid forces include fluid inertia and fluid damping; the magnitudes of these forces are
determined in terms of the added mass coefficient and modal damping ratio as functions
of fluid void fraction. The fluid excitation force in two-phase cross flow is measured by
Hara for a single tube and by Nakamura for a tube array. Two-phase flow excitation
forces are found to be significantly different from those of a single-phase flow for some
ranges of parameters. Jendrzejczk and Chen present a technique for measuring the fluid
excitation forces acting on a single tube, two tubes in tandem, and two tubes normal to
flow; measurements are made in water flow. Itis recognized that the crux of flow-induced
vibration analysis is the determination of the fluid forces. These papers have provided
some useful data, and much more is needed in the future.

2. Dynamic Instability of Tube Banks in Cross Flow

Stability of a tube bank in cross flow is one of the most practically important and
technically interesting problems. In the last decade, many innovative studies have been
published. Four papers focus on this problem. In Japan, Tanaka and his colleagues report
on the motion-dependent fluid forces acting on a square tube array with a pitch-to-diameter
ratio of 2.0. These fluid forces are then used to predict the critical flow velocity and are
compared with experimental results. In a companion paper, Ohta et al. employ the
measured motion-dependent fluid forces to calculate the critical flow velocity of practical
system components using a standard modal-analysis approach. On this side of the ocean,
Weaver and his colleagues in Canada study the same problem using a different approach.
A theoretical model is developed from the principles of fluid mechanics and the theory of
elasticity. The essential features of instability phenomena predicted by the model are, in
general, in agreement with the experimental observations. In another paper, they examine
the differences of instability phenomena in air and in water for a parallel triangular array



of tubes with a pitch-to-diameter ratio of 1.375. These papers cover the essential issues
and provide some solutions to this interesting problem.
3. Axial Flow-induced Vibrational Response

Depending on the configuration, the flow may be classified as internal, external,
or combined internal-external. Connors et al. present an experimental study of the
motion-dependent fluid force of a square array in an external axial flow; they find that
the fluid damping force, similarly to that for a single cylinder, increases with flow velocity.
A theoretical and experimental study of the response of a BWR jet pump to turbulent
pressure fluctuations is conducted by Nakao and Torres. The study uses random vibra-
tion theory as well as large flow test facility to test a full-scale model; this is one of the
samples illustrating the application of FIV theory to a nuclear-reactor-system component.
The other two papers focus on piping-system response associated with internal flow.
Hiramatsu et al. measure the fluid force and the piping-system response; an analytical
method is also presented for predicting the steady-state response. Axisa and Gibert report
on a finite element method for predicting the transient response of piping containing com-
pressible fluid, including the effect of nonlinearities. The method is applied to study the
effect of a solium-water reaction in an LMFBR secondary loop.

4, Acoustoelastic and Fluidelastic Vibration

Interaction of an acoustic field with structural motion can be significant; the result-
ant oscillation is called acoustoelastic vibration. Schwirian et al. use a computer program
to deal with the pump-induced acoustic pressure. Application of the program to a prac-
tical test loop is illustrated. Simmons and Baldwin consider the vortex-excited acoustic
response of a relief valve. A preliminary design guide to avoid vortex-excited resonance
is proposed. The other two papers in this group study the inertial effect of fluid on
structures. Interaction of structural oscillations with fluid motion results in coupled
vibration of a fluid/structure coupled system; this is called fluidelastic vibration. Planchard
et al. study the medium consisting of a large number of tubes in quiescent fluid. A com-
putational method based on the homogenization technique is proposed to determine the
equivalent sonic velocity and the natural frequency in the composite medium. Sattinger
conducts a scale-model test for a shell submerged in fluid, to demonstrate the scaling
laws for fluid-structure systems.

These papers have covered several aspects of flow-induced vibrations. It is hoped that
this volume will be useful to designers as well as researchers in this field. Certainly, many
unresolved questions remain to be pursued and will hopefully continue to receive atten-
tion in the future. Readers who are interested in the general area of flow-induced vibra-
tion may also be interested in the following publications: ““Flow Induced Vibrations,”
edited by S. S. Chen and M. D. Bernstein, ASME, 1979; and ‘“Flow-Induced Vibration of
Power Plant Components,” edited by M. K. Au-Yang, ASME, PVP-41, 1980.

We wish to express our thanks to the authors for their cooperation in preparing their
manuscripts and for their willingness to participate and share their experience with others
at this symposium.

S. S. Chen
M. P. Paidoussis
M. K. Au-Yang
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ADDED MASS AND DAMPING OF A VIBRATING ROD IN A TWO-PHASE
AIR-WATER MIXED FLUID

F. Hara, Associate Professor and O. Kohgo, Graduate Student
Tokyo University of Science
Tokyo, Japan

ABSTRACT

This paper presents the added mass and damping of a vibrating circular rod

in a two-phase fluid.
theoretical value.

The experimental fluid added mass agrees well with the
The fluid damping ratio, in general, increases linearly with

the void fraction, but over a certain void fraction it decreases gradually with

the void fraction.
INTRODUCTION

Two kinds of force act on a structure

vibrating in a fluid--one proportional
to the acceleration and the other pro-
portional to the velocity. The first

force generates added mass and the se-
cond damping coefficient,as coefficients
to the acceleration and velocity. These
two coefficients are essential to an e-
valuation of the response of a structure
vibrating in a fluid.

Several papers on this problem have
been confined to dealing with a single-
phase fluid only. Chen[l] theoretically
evaluated added mass and damping of a
circular rod vibrating in a liquid, us-
ing a two-dimensional analysis of the in-
compressible, viscous fluid, giving ex-
perimental credibility to his theoretic-
al analysis. Fujimoto [2] et al. clear-
ly showed the dependence of these quan-
tities on the vibrational amplitude of a
rectangular rod immersed in water.

Two-phase fluid plays an important
role in the utilization of industrial
facilities such as steam generators and
boiling water reactors. It is well

known that a two-phase fluid flow gener-
ally exerts unexpectedly large forces on
a structure immersed in such a flow[3].

Although added mass and damping due to
the two-phase fluid must be correctly
determined to evaluate the vibrational
response of a structure in such a flow,
few papers on this are yet available.
Carlucci presented experimental data on
added mass and damping of rod bundles
in a still, two-phase fluid[4] as well
as in a two-phase axial flow[5]. In his
paper [4], however, the range of experi-
mental conditions for rod-cylinder
clearance was not wide enough, and the
two-phase fluid configuration and bub-
ble size were not clearly specified. At
this point in research on this problem,
then, more systematic experimental data
on added mass and damping 1is needed

‘with regard to two-phase fluid cases.

This paper presents experimental da-
ta on the added mass and damping ratio
of a vibrating circular rod immersed in

a two-phase fluid in an outer circular
container. Six cases were tested for
different clearances between the rod
and container: the ratio ¥ = D/d wvar-
ies from 2 to 16, where D = the inner
diameter of the container and d = rod

It was found that added mass
decreased linearly with an increasing
void fraction up to about 40%. over
that value, however, it deviated great-
ly from the above-mentioned linear de-
pendence on the void fraction. Damping
increased almost linearly with the void
fraction, which is similar to charac-
teristics of the added mass. Over 40%
of the void fraction, it became almost

diameter.



independent of the air concentration in

the two-phase fluid. )

This paper also deals with the spring
effect of an air bubble on added mass,
explaining the peculiar dependence of
added mass on the void fraction.

METHOD OF EVALUATING ADDED MASS AND
DAMPING

Hydrodynamic Method

When a two-phase air-water fluid is
assumed to be homogenous, incompressi-
ble, and inviscid, the two-~dimensional
hydrodynamic theory on added mass devel-
oped by Chen[l] gives the following for-
mula for evaluating added mass per unit
length f of a vibrating rod in a two-
phase fluid, neglecting the density of
air,

Yz+ L

» ¥ =D/4, (1)

RB=1t )L -d) R,

-1

length
and

where fy = water mass per unit
for the cross-sectional area Nd2/4,
o = void fraction.

Random Vibration Method
Applying the linear theory on lateral

vibration of a slender rod to this pro-
blem, the equation of a rod in a two-
phase fluid is easily described as
3y 3y
EIW + Ky(z,k)y + (C + Cyalz, &K ))'a—g
Py
+(P +f3(z,o())at2
= Wolz -a) + T(z,&k). (2)
In eq. (2), y is rod displacement, Ka
(z,d) is the two-phase fluid induced

spring effect, Caz(z,o) is two-phase flu-
id damping, fa(z,&) is two-phase fluid
added mass, a is the location of exter-
nal excitation, and P is rod mass per u-
nit length. On the right-hand side of
eq. (2), W and T are external and two-
phase fluid induced excitations. Since
the second natural frequency is widely
separated from the first, only the first
vibration mode is considered. Vibration
displacement y is given as follows:

y = X(2)Y(t), (3)

where X(z) is the first normalized modal

function such that J:xzdz 1, and Y(t)
is a function of time, Substituting eq,
(3) into eq. (2), multiplying X(z) with
both sides of eq. (2), and integrating
over rod length 1 yield

M+ MDY + (€ cDY 4 K+ KDY
(4)

*
W+ T,
where
M* = Pl/x(a) ’

* = A%E1/x(a),

*
c

cl/x(a),
™ = f."rxaz/x(a),
u - {'f;x2dz/x(a),
k= [ xx2dz/x(a),
[
C; = L‘Caxzdz/x(a),
and A = the first eigen value.

Undamped natural frequency fp(d) ob-
tained from eq. (4) is

K + K
——"a .
2V o+ M}

1

fn(d)
(5)

Undamped natural frequency fj(X) is al-
most equal to resonance frequency f @) in

eq. (4). It is then assumed that
falot) = £ (). (6)
In eq. (4), M; and K% must be zero for

the case of void fraction ¢ = 1.0, i,e.,

in air. The f, in air thus is
1 [+ .
£ (d =1) =2_TTK/M = fr(d=1).
(7)
From eq. (6) and (7),
*
. [ fr(e=1) 2 Ky "
My ={———) a+—=)-1;m ,(8
/ £ () K
or, multiplying X(a)/1 with both sides
of eq. (8) and defining as fxzjédx/
1, then eq. (8) is rewritten as
2 *
f (A =1) K
» r a
ff.,l=[(——— 1+—) -1}[’ 9
() K
Assuming the statistical independ-
ence of white Gaussian excitation force
W from two-phase fluid induced excita-

tion force T* and T* as white Gaussian,



D
\VA
.+ | ALCYUINDER
TOW PHASE i E
FLUID I+ .
'/STRAIN
HYBRID DATA D.C. GAGE
=8 =
coMPUTER | | RECORDER AMP ACRY#.JSE
ELECTRIC POWER ELECTRO -
S Ba Al
OSCILLATOR AMP EXCITER AlRiiv{)‘(\THERR
AIR _J SURGING | 4
COMPRESSOR TANK

r
_/’
FLOW-RATE CONTROL

S/

Fig. 1 Schematic diagram of experimental apparatus

complex compliance, H, can be defined as

1
*
- (M MW+ (c*+c;)w+(1<*+1<a) . (10)

H=
The power spectral density (PSD) of dis-
placement response Gy(w) is obtained as

Gy(w) = |1 |2 (Gy(w) + Gpx(w)). (11)

total
PSD

Since Gy and Gpx are constant,
camping ratio ¥, is evaluated from
Gy(m) as

3t = 1/2/N-1 x Af/fr(d ) I (12)
where Af is a 1/ N peak band width for
the first mode vibration in G,, (w). As
total damping ratio 3t is theoretically
obtained from eq. (4) as

* *
c* + ¢,
3 (13)

2 '\/(74* + M;) (K* + k%)

and C*= 23¢ ©=1) { ®¥K* for o = 1.0, i.

e., in air, two-phase fluid damping ra-
tio 33 becomes
Ty (o=1)
3a = 3e(k) - — — (19)
Vorrmd/my (1t /x*y
Finally, if spring effect KX of the

two-phase fluid is neglected, added mass
ﬁ; and two-phase fluid damping ratio 3
are evaluated by the following equa-
tions,

*

fr(ol=1) 2
fﬁ = {(‘——————J

-lfl
£,(c) } (15)

Sa = Je(et)

- Je(ch=1)/ \/(1 +PX/€) . (1)

EXPERIMENTAL APPARATUS AND PRCCEDURES

Figure 1 shows a schematic diagram of
the experimental system in which a cir-
cular aluminum rod with a diameter, 4,
of 5 mm, and 500 mm long, was concentri-
cally installed in an acrylic outer cir-
cular container, One end of the rod was
fixed at the bottom part, which worked
as an air injector. The injector con-
sisted of two circular disks, the upper
having 0.1 mm holes every 4 mm in a grid
fashion and the lower having 2 mm holes
with 4 mm pitches for both directions.
The inner diameter.of the outer contain-
er was 80, 50, 40, 30, 20, or 10 mm.

The test rod was excited by an elec-
trodynamic exciter, W, at a point 38 mm
from the fixed end, and input to the ex-
citer was white Gaussian random. The vi-
brational strain of the rod was measured
50 mm from the fixed end.

Water filled the container to a cer-
tain height, hy, then air was injected
into the water from the air injector in
the form of air bubbles to raise water
height to 540 mm from the container bot-
tom. Thus, void fraction o in the con-
tainer was evaluated by the formula 1-hy,
/540.

Table 1 shows void fraction & and ra-



and their average obtained at each fre-
guency, After averaging, a migrating
average was applied to the PSD distri-
bution to find a clearcut peak in the

Table 1 Experimental conditions speci-
fied by void fraction  and gap
ratio 4 = D/d

PSD.
VOID FRACTION o %
Y {o|5|10]20]|30]|40]|50]|60]|70 RESULTS

16 B|Bi81B8/B]B BB Vibrational Strain PSDs
10 B|/B|B|B|B|B|B Figures 2(a) to (h) are typical PSDs
8 Bl B| B | B [B+S of vibrational strains produced on the
rod surface through white Gaussian ran-
6 B{B|B|BIBS dom force W and by two-phase fluid in-
4 B|B|B|B|BsS duced random force T. Figures (a) to
2 s’8|sS| s|S|F|F|F|F (d) are for cases of ¥ = 10; (a) is for
- ) . o= 100%, i.e., in air; (b) for & = 0%,
B:BUBBLE S:SLUG F:FROTH i.e., in water; (c) for o = 30%; and

(d) for o = 60%. Increasing the void
tio 4 = D/d, with two-phase fluid con- fraction, the peak PSD frequency rose
figurations; B =bubble, B + S = bubble and the distribution became wider. Fi-
+ slug, S = slug, and F = froth. Photo gures (e) and (f) are for ¥ = 4; (e) is
1 shows these typical fluid phase con- for of = 0% and (f) for & = 30%. Figures
figurations. (g) and (h) are for ¥ = 2; ol = 0% and

Vibrational strain signals obtained ot = 30%. Decreasing 4 for K = 0%, the
from the strain gage on the rod surface peak frequency became smaller, meaning

50 mm from the fixed end were digitized that, in water, added mass increased
by an A-D converter with a sampling with the decrease of the gap between
period of 0.02 s, and their PSDs were the vibrating rod and the outer wall,
numerically calculated using 5,000 di- For o = 30%, i.e., in two-phase fluid,

gits. For each experimental condition this decrease in PSD peak frequency, al-
in Table 1, five PSDs were calculated though not so clear, was recognizable,

Photo 1 Typical two-phase fluid configurations, (a) 4 = 16, « = 10%, bubble,
¢ (b) 4 =16, & = 70%, bubble, (c) ¥ = 4, o = 10%, bubble, (d) 7= 4,
= 40%, bubble +slug, (e) 4 =2, & = 15%, slug, (f) 4 =2, « = 50%,

froth
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& for ¥ = 16 (— THEORY in eo. & for A = 4 (— THEORY in eq.
(1)) (1))
as Figs. (c) and (h) show. From these theoretical one calculated from eq. (1).

general observations, it can be qualita-
tively said that two-phase fluid added
mass decreases and damping increases
with the void fraction.

Added Mass

Figure 3 shows normalized added mass
B/{a* 1)/ -1} Pw vs void fraction o for ¥
= 16. Here, P: was evaluated from eq.

(15). The solid line indicates ratio 2
in eq. (1) to  Y3)/x%1) Ry, i.e., 1 -
o . In the range of void fraction 0% to

50%, added mass ,Ff: agreed well with the

For o  50%, however, added mass deviat-
ed from the theoretical trend, showing

smaller values. Almost the same feature
was found for 4= 16, 10, 8, and 6. For
X = 4, added mass of the two-phase flu-

id showed a value smaller than the theo-
retical one, even in the range of small
void fractions (Fig. 4). For an even
smaller gap of ¥ = 2, added mass showed
a value almost equivalent to the theore-
tical one in the range of void fractions
smaller than O = 40%. For of > 40%, how-
ever, added mass was drastically smaller
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than the theoretical one, 1 - & (Fig, 5)\

Figure 6 shows the ratio of added
mass ,P: to (1 -X )Ry and gap ratio ¥ .
This figure indicates that, for smaller
void fractions, experimental added mass

from eq. (15) showed rather good agree-
ment with the theoretical one (eq. (1)).
For large void fractions of > 40%, added
mass showed a much smaller value than
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Fig. 7 Damping ratio ¥ and void frac-
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Fig. 8 Damping ratio Y3 and ¥

the theoretical one for all 4 in the

experiments.

Dampina Ratio
Figure 7 shows two-phase fluid damping 3,

(%) evaluated from eg. (16) as a func~-
tion of void fraction . For each 4,
damping ratio %3 increased almost line-
arly with the void fraction up to & =40%



then decreased gradually for further in-
creases of void fraction.

Figure 8 shows the effect of 4 on
two-phase fluid damping 33 . For smaller
void fractions, J3 increased as 4 de-

creased. In higher void fractions, how-
ever, this trend was somewhat disturbed
due to two-phase fluid configurations.

DISCUSSION AND CONCLUSIONS

Added mass and damping obtained ex-
perimentally are interpreted as vibra-
tional system parameters for the first
vibration mode of a cantilever-type rod
in the two-phase fluid. It should be
noted here, then, that the value of
these determined experimentally has the
possibility of being dependent on the

vibrational configuration of the rod and
also on the order of the vibration.
Extending the method of evaluating
added mass and damping through random
vibration technique to higher vibration
mode cases, it may be possible to obtain
the distribution of added mass and damp-
ing along the rod axis, f,(z,&) and C
(z,d). However,
in future.
Carlucci[5] pointed out two mechani-
sms for reducing two-phase fluid added
mass, one being nonhomogeneity of bubble
configuration in the mixed fluid and the
other being the spring effect of the two-
phase fluid on the rod vibration system.
Thus, the discussion here focuses on the
two points in relation to added mass.

a
this is work to be done

Nonhomogeneity Effects

Comparing vibrational rod dimensions
in axial and radial directions with bub-
ble size in the two-phase fluid, the
nonhomogeneity effect is assumed to ap-
pear in cases where the rod diameter or
length is smaller than bubble size. Thus
the homogeneity of the two-phase mixed
fluid may be directly related to bubble
configuration in a macroscopic sense as
well as with local void fraction distri-
bution in a microscopic sense. In Fig.
3 and 5, the experimental value of added
mass evaluated by eq. (15) agreed with
the theoretical one for bubble and slug
configurations, but for froth configura-
tion in 4= 2, the deviation of experi-
mental added mass is large, meaning the
amount of liquid existing at the outer
wall could reduce the added mass to the
marked degree shown in Fig. 5.

Even in a mixed bubble fluid configu-
ration, however, added mass was rather
small in higher void fractions or at 4 =
2. This discrepancy between experimen-
tal and theoretical values indicates o-

ther mechanisms of reducing two~phase
fluid added mass, such as the nonhomo-
geneity of local void fractions or the
spring effect of the two-phase fluid.

Table 2 Two-phase fluid spring effect
and added mass modification

- Added mass
Kh/K’ €q. (15

eq. %

0.9169 1.152

Y | (%)

4 10

EAW)

1.25

0.0662

4 30 0.0119 0.7814 0.8312 1.06

16 20 0.0324 1.0526 1.1952 1.14

16 60 0.0148 0.6865 0.7958 1.16

Spring Effect

The calculated peak value of compli-
ance |H|2, by using the total  damping
ratio Y @) determined from eq. (12) and
rod stiffness K*, gave a recognizable
discrepancy from the peak value of ex-
perimental compliance, implying the ex-
istence of spring effect on experimental
compliance. Further, bubbles between
the vibrating rod and the inner wall of
the container might be deformed by rod
motion. This deformation would generate
a repulsive force against the rod which
might play a role in effects on the rod
vibration in the two-phase fluid.

When taking into account the spring
effect of two-phase fluid in evaluating
added mass, the increase of added mass

is easily calculated from eq. (9) foE
experimental value {fr(o(=1)/fr (o()}
as
- 2 *
f (o =1) K3
Afa = § e " F (17)
£ () K
Since K* must be positive, Afa)> 0, so
if a spring effect existed, the added

mass must be larger than the experimen-
tal ones obtained from eqg. (15) in the
previous section.

To evaluate two-phase fluid spring
effect K;, the magnitude of compliance
| H|” was experimentally obtained for
the two cases of single-phase water and
two-phase fluid with void fraction o
From peak values in | H|“ for both cas-
cs, K* was easily evaluated using to-
tal damping ratio 3t . Table 2 shows
results for 4 = 4 and 16. Table 2 also
indicates that a two-phase bubble fluid
could produce only a small spring ef-
fect (1 to 6% for rod stiffness), but
that the spring effect greatly influen-
ced added mass. For higher void frac-
tions, e.g., o = 30% at ¥ = 4 or oA =



60% at X\ = 16, experimental added mass,
including the two-phase fluid spring ef-
fect, shows a still smaller value than
the theoretical one, indicating that the
microscopic nonhomogeneity in local void
fraction might be effective in reducing
added mass. There also might exist the
possibility of affecting the magnitude
of added mass--e.g., the effective axial
flow component of the rod surface or
change of mode shape of the cantilever-
type rod. These, however, have not been
examined here.

In conclusion, this paper presented

experimental values for added mass and
damping of a vibrating rod in a mixed
air-water two-phase fluid for a wide

range of void fractions and of rod-con-
tainer clearance, leading to the follow-
ing conclusions.

(1) Added mass decreased linearly with
the increase of void fraction in the
range of small void fraction, but it be-

came drastically small for higher void
fractions.
(2) Corresponding to the added mass

character in (1), two-phase fluid damp-
ing increased linearly with void frac-
tions up to & = 40%. It decreased grad-
ually, however, with & for of > 40%.

(3) We discussed three kinds of mechan-
isms reducing two-phase fluid added mass
so much in higher void fractions, i.e.,
the macroscopic nonhomogeneity of bubble
configuration in the fluid; the micro-
scopic mechanism of local void fraction;
and the spring effect of the two-phase
fluid.

(4) The spring effect was quantitative-

ly evaluated, offering an approximately
6 to 25% increase in added mass.

ACKNOWLEDGMENTS

The authors wish to  express their
gratitude to Messrs. N. Ogawa (graduate
student, Tokyo University of Science)
and H. Kajiwara (undergraduate student,
Tokyo University of Science) for their
assistance in experimental work.

REFERENCES

1. Chen, S. S., et al., "Added Mass
and Damping of a Vibrating Rod in Con-
fined Viscous Fluids," ANL-CT-75-08,
1974, pp. 1-25.

2. PFujimoto, S., et al., "Fluid
Damping of a Vibrating Rectangular Rod
in a Confined Fluid," JSME Preprint, Na
810-3, 1981, pp. 130-131.

3. Hara, F., "Two-phase Cross-flow
Induced Vibrations in a Circular Cylin-

der (Lift and Drag Forces),' JSME  Pre-
print, No. 810-16, 1981, pp. 1-7.
4. carlucci, L. N., "Hydrodynamic

Mass and Fluid Damping of Rod Bundles
Vibrating in Confined Water- and Air-
water Mixtures," Trans. 4th SMiRT, Vol.
D, D3/11, 1977, pp. 1-10.

5. Carlucci, L. N., "Damping and Hy
drodynamic Mass of a Cylinder in Simula-
ted Two-phase Flow," ASME Journal of Me-
chanical Design, Vol. 102, 1980, Pp.
597-602.




TWO-PHASE CROSS-FLOW-INDUCED FORCES ACTING ON A CIRCULAR CYLINDER

F. Hara
Department of Mechanical Engineering
Tokyo University of Science
Tokyo, Japan

ABSTRACT

This paper clarifies experimentally the characteristics of unsteady flow-
induced 1ift and drag forces acting on a circular cylinder immersed perpendicular
to a two-phase bubbly air-water flow, in conjunction with Karman vortex shedding

and pressure fluctuations.
INTRODUCTION

Karman vortex shedding and fluid e-
lastic excitation are well known caus-
es of violent oscillation in a cylinder

or tube array immersed in a  single-
phase cross flow. Connors[l], Chen[2],
Pettigrew[3], Blevins[4], and others

have published many papers on this pro-
blem. Several situations exist in our
technological field, however, where
two-phase fluid (e.g., a liquid-gas mix-
ture) plays an inevitable role in the
use of facilities such as steam genera-
tors, condensors, and boiling water re-
actors. Shin and Wambsganns[5] showed
an actual tube failure in a steam gen-
erator tube bank apparently caused by
two-phase flow-induced vibration.

Two-phase air-water or steam-water
flow-induced vibrations (hereafter, FIV)
thus present a new side of on-site FIV
problems, although among the very few
research works done are those by Petti-
grew et al.[6], and Heilker and Vincent
[7], and increasing attention is being
paid to FIV problems with regard to safe
operation of heat exchangers or steam
generators.

To understand the actual two-phase
cross—-flow induced vibration mechanism
in tube bank systems, and to develop the
technological means to suppress such vi-

brations, experimental work is needed.
We initially utilize the very simplest
case--that of a single cylinder immer-
sed perpendicular to the flow--for a
fundamental and academic work on unstea-
dy fluid forces acting on a single cyl-
inder in a two-phase bubble cross
flow, i.e., we experimentally examined
(1) Karman vortex shedding and pressure
fluctuations and (2) two-phase flow-in-
duced unsteady lift and drag forces with
regard to flow velocity, air concentra-
tion, and bubble size. Experimental re-
sults presented here show that Karman
vortex shedding disappears over a cer-
tain value of air concentration in the
two-phase flow and, related to this dis-
appearance, two-phase flow-induced 1lift
and drag forces show interesting charac-
teristics in frequency and magnitude.
That is, flow-induced forces are rather
small and periodical in low air concen-
tration but become very large and random
in higher air concentration.

EXPERIMENTAL PROCEDURES

Two-phase Flow Test Loop

The two-phase air-water flow loop
used for the experiments in this paper
was designed to produce a steady flow

in the test section through a 1.5 m wa-
ter head. From an upper constant level
tank, water flowed down to a water tank
through an orifice and a flow rate con-
trol valve. The water flow rate, Ow

(m3/s), measured by the orifice, was in-
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rectangular
shaped test section,
nozzle, and 30 mm test
T cylinder, where numbers
indicate 1 mm diameter
holes for measuring
pressure fluctuations

200

dicated on a manometer. The upper tank

kept a constant water head through wa-
ter overflowing to a lower buffer tank.

Water in the water tank flowed up to a
nozzle connected to a 200 mm x 60 mm test
section, and was there accelerated to a
specified velocity at the test section
entrance. Air, pressurized to about 0.2
MPa, went to an accumulator, then reach-
ed an air flow meter through a flow rate
control valve. Air pressure was mea-
sured at the flow meter exit. Air was
injected through an air injector with 1
mm diameter holes into almost still wa-
ter 0.3 m below the nozzle entrance,
producing medium-sized air bubbles (a-
bout 20% of the test cylinder's diamet-
er (30 mm)). Air and water were mixed
into a homogeneous two-phase fluid in
the nozzle, then entered the test sec-
tion. A 30 mm circular test cylinder
was installed at the center line 40 mm
downstream from the nozzle exit. After
passing the cylinder, the two-phase flu-
id went to a lower constant head tank.

Air was then released into the at-
mosphere, and water overflowed the
tank, returning to the buffer tank. A
pump raised the water in the  buffer

tank to the upper constant head tank.
Figure 1 details the rectangula.
test section (200 mm x 60 mm) and the
nozzle, whose entrance area was 200 mm
x 200 mm and height 200 mm. The nozzle
exit area was 200 mm x 60 mm; two of
the nozzle walls foxmed .an elliptic
curve, while the other two were flat.
The maximum water flow velocity availa-
ble in the test section was 0.6 m/s, cor-
responding to Reynolds number 1.8 x
104 for a representative fluid mechani-

cal length of 30 mm (the cylinder dia-
meter). The flatness of water velocit-
y distribution was 13 for an average
flow velocity of 0.4 m/s at a section
40 mm downstream from the nozzle exit.
The homogeneity of the two-phase flow
was tested through void fraction distri-
bution measured by a needle-type elec-
tric void probe over the cross-section
(200 mm x 60 mm) at the same location
as above. Results were completely sat-
isfactory, indicating a *1.5% variation.
Figure 1 also shows the location of
pressure taps (numbered 1 to 8)--equal-
ly spaced 1 mm diameter holes along
circumferences at the circular cylin-
der's mid section for measuring pres-
sure fluctuation.

Figure 2 shows a test cylinder for
the measurement of unsteady 1lift and
drag forces wusing cross-configurated
flat springs, each of which detected a
1lift or drag force component. The nat-
ural frequency of the ¢ylinder-spring
system was about 100 Hz in each direc-
tion, which was sufficiently large com-
pared to the dominant frequency of un-

steady two-phase flow induced forces.
TRAIN GA!
E e ,_'__}_
1
55 { FLow
Fig. 2 30 g4 test cylinder for flow-

induced-force measurement
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Instrumentation and Data Processing
Pressure Fluctuations. Two-phase flow-
induced pressure fluctuations were si-
multaneously measured at points 1 and
5, 2 and 6, 3 and 7, and 4 and 8 on the
cylinder (Fig. 1). The electrical out-
put signals of pressure fluctuations
from strain-gage-type pressure transdu-
cers (Kyowa, PG-200 GD) were amplified
by Kyowa DPM-11013 amplifiers and re-
corded on magnetic tape. They were con-
verted to digital form by an A-D con-
verter with a sampling period of 0.025
second. The data number size was 2,000
digits. Using this digitized data, the
power spectral density (PSD) and root
mean square (RMS) of differential pres-
sure fluctuations were calculated for
the experimental cases shown in Table 1.
Lift and Drag Forces. Unsteady lift
and drag forces generated by the two-
phase flow on the cylinder were detect-
ed as strain signals in the small flat
springs attached at both ends of the cy-
linder (Fig. 2). Electrically ampli-
fied strain signals were recorded on
magnetic tape. Lift and drag forces si-
multaneously measured for each experi-
mental condition shown in Table 1 were
also converted to digital form, with
the same sampling period and data num-
ber size as cases for the pressure fluc-

tuation experiment. The PSD, RMS, and
correlation between unsteady 1lift and
drag forces were numerically calculat-

ed.

Flow Visualization. At points 3 and
7 in Fig. 1, black ink was injected in-
to the two-phase flow to yield a dark
trail showing the wavy motion of wakes.
Two-phase flow wake patterns were pho-
tographed to investigate Karman vortex
shedding from the cylinder. The oscil-
latory motion of black ink trails be-
hind the cylinder was detected by a Cds
photodiode to measure Karman vortex
shedding frequency.

tory wake in two-phase flow (V=0.4 m/s, =
0.06),
(v=0.4 m/s,

Table 1 Experimental conditions
cified by Qy and Q,

spe-

.%Q. Qw (m:}s) 7
ris) [0.0012]00024]0,0036 [110048] 00060] 00072
0.0]00 |00 |00 |00 |00 0.0
18,810,135 | 0,072 | 0.050 | 0.038 | 0,030 | 0.025
38.2 | 0.241 0,137 | 0.096 | 0.074 | 0,060 | 0.050
59,0 | 0,330 | 0,197 | 0.141 ] 0,109 | 0,090 | 0.076
81,7 | 0,405 | 0.254 | 0.185 | 0.145 | 0,120 | 0.102
106,8 | 0.471 | 0,308 | 0.229 | 0.182 | 0,151 | 0,129
135,3 0,530 | 0,361 | 0,273 | 0.220 | 0.184 | 0,158
1664 | 0,584 | 0,412 | 0,319 | 0.260 | 0,219 | 0,190
191,5 | 0,615 | 0.6k | 0,347 | 0.285 | 0,242 | 0.210

Bubble Size. Aair bubble diameters
for both lift and drag force directions
were measured from photos of the two~
phase bubble flow for about 100 bubbles
and the average value and standard de-
viation were evaluated.

Experimental Conditions

The two-phase flow condition _was
specified by water flow rate Q, (m3/s)
and air flow rate Qg (m3/s), shown in
Table 1, where an air concentration, ,
defined as Qa/(Qw +Qa), is also de-
scribed, ranging from 0.0 to 0.615. 1In
Table 1, experimental series indicated
by an asterisk (*) were omitted for the
two-phase flow pressure measurement ex-
periment. The Reynolds number calcula-
ted by VDg/)y (V = mean water velocity
in the test section, V = Q, /A, A being
the cross-sectional area of the test
section, Dy = cylinder diameter, V= ki-
nematic viscosity of water) was about
3.0 x 103 to 1.8 x 104.

The average bubble diameter was 6.5
mm, with a small standard deviation of
1.35 mm.

Photo 1 (a) Karman vortex shedding in water

(b) Oscilla-

flow (V=0.4 m/s),

(c) Steady wake in two-phase flow
=0.20)



