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Modern Birkhauser Classics

Many of the original research and survey monographs in pure and
applied mathematics published by Birkhauser in recent decades have
been groundbreaking and have come to be regarded as foundational
to the subject. Through the MBC Series, a select number of these
modern classics, entirely uncorrected, are being re-released in
paperback (and as eBooks) to ensure that these treasures remain
accessible to new generations of students, scholars, and researchers.



Preface to the Second Edition

This volume is a completely new version of the book under the same title, which
appeared in 1981 as Volume 9 in the series “Progress in Mathematics,” and which has
been out of print for some time. That book had its origin in notes (taken by Hassan
Azad) from a course on the theory of linear algebraic groups, given at the University
of Notre Dame in the fall of 1978. The aim of the book was to present the theory of
linear algebraic groups over an algebraically closed field, including the basic results
on reductive groups. A distinguishing feature was a self-contained treatment of the
prerequisites from algebraic geometry and commutative algebra.

The present book has a wider scope. Its aim is to treat the theory of linear algebraic
groups over arbitrary fields, which are not necessarily algebraically closed. Again, |
have tried to keep the treatment of prerequisites self-contained.

While the material of the first ten chapters covers the contents of the old book, the
arrangement is somewhat different and there are additions, such as the basic facts about
algebraic varieties and algebraic groups over a ground field, as well as an elementary
treatment of Tannaka’s theorem in Chapter 2. Errors — mathematical and typograph-
ical — have been corrected, without (hopefully) the introduction of new errors. These
chapters can serve as a text for an introductory course on linear algebraic groups.

The last seven chapters are new. They deal with algebraic groups over arbitrary
fields. Some of the material has not been dealt with before in other texts, such as
Rosenlicht’s results about solvable groups in Chapter 14, the theorem of Borel of Tits
on the conjugacy over the ground field of maximal split torus in an arbitrary linear al-
gebraic group in Chapter 15 and the Tits classification of simple groups over a ground
field in Chapter 17.

The prerequisites from algebraic geometry are dealt with in Chapter 11.

1 am grateful to many people for comments and assistance: P. Hewitt and Zhe-Xian
Wang sent me several years ago lists of corrections of the second printing of the old
book, which were useful in preparing the new version. A. Broer, Konstanze Rietsch
and W. Soergel communicated lists of comments on the first part of the present book
and K. Bongartz, J. C. Jantzen. F. Knop and W. van der Kallen commented on points of
detail. The latter also provided me with pictures, and W. Casselman provided Dynkin
and Tits diagrams. A de Meijer gave frequent help in coping with the mysteries of
computers.

Lastly. I thank Birkhauser — personified by Ann Kostant- for the help (and pa-
tience) with the preparation of this second edition.

T. A. Springer
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Chapter 1

Some Algebraic Geometry

This preparatory chapter discusses basic results from algebraic geometry, needed to
deal with the elementary theory of algebraic groups. More algebraic geometry will
appear as we go along. More delicate results involving ground fields are deferred to
Chapter 11.

1.1. The Zariski topology

1.1.1. Let k be an algebraically closed field and put V = k". The elements of the
polynomial algebra § = k[T, ..., T,] (abbreviated to k[T]) can be viewed as k-
valued functions on V. We say that v € V is a zero of f € k[T] if f(v) = 0 and that
v is a zero of an ideal / of S if f(v) = 0 forall f € /. We denote by V(/) the set of
zeros of the ideal /. If X is any subset of V, let Z(X) C § be the ideal of the f € S
with f(v) =0forall v € X.

Recall that the radical or nilradical /I of the ideal / (see [Jac5, p. 392]) is the
ideal of the f € S with f" € I for some integer n > 1. A radical ideal is one that
coincides with its radical. It is obvious that all Z(X) are radical ideals.

We shall need Hilbert’s Nullstellensatz in two equivalent formulations. -

1.1.2. Proposition. (i) If I is a proper ideal in S then V(I) # @;
(ii) For any ideal I of S we have Z(V(I)) = /1.

For a proof see for example [La2, Ch. X, §2] . The proposition can also be de-
duced from the results of 1.9 (see Exercise 1.9.6 (2)).

1.1.3. Zariski topology on V. The function / + V(/) on ideals has the follow-
ing properties:
(@) V({0}) = V, V(S) =0,
(b)If 1 C J then V(J) C V(I);
©@VvuUnJ)y=vuIyvvd),
(d) If (Ia)aea is a family of ideals and I = Zae a la is their sum, then V(I) =
Maea V{a).

The proof of these properties is left to the reader (Hint: for (c) use that /.J C
I N J). It follows from (a), (c) and (d) that there is a topology on V whose closed
subsets are the V(7), I running through the ideals of S. This is the Zariski topology.
The induced topology on a subset X of V is the Zariski topology of V. A closed set
in V is called an algebraic set.

1.1.4. Exercises. (1) Let V = k. The proper algebraic sets are the finite ones.
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(2) The Zariski closure of X C V is V(Z(X)).

(3) The map I defines an order reversing bijection of the family of Zariski closed
subsets of V onto the family of radical ideals of S. Its inverse is V.

(4) The Euclidean topology on C" is finer than the Zariski topology.

1.1.5. Proposition. Let X C V be an algebraic set.

(i) The Zariski topology of X is T, i.e., points are closed;

(ii) Any family of closed subsets of X contains a minimal one;

(iit) If X, D X3 D ... is a descending sequence of closed subsets of X, there is an h
suchthat X; = X, fori > h;

(iv) Any open covering of X has a finite subcovering.

If x = (x, ..., X,) € X then x is the unique zero of the ideal of § generated by
Ty — xi, ..., T, — x,. This implies (i). (ii) and (iii) follow from the fact that § is a
Noetherian ring [La2, Ch. VI, §1], using 1.1.4 (3).

To establish assertion (iv) we formulate it in terms of closed sets. We then have to
show: if (/g)aea is a family of ideals such that (., V(Io) = @, there is a finite subset
B of A such that ﬂ“, V(I,) = B. Using properties (a), (d) of 1.1.3 and 1.1.4 (3) we
see that ), _, I« = S. There are finitely many of the I,, say Iy, ... , I, such that 1
lies in their sum. It follows tha} Ii+...+1, = S, which implies that ﬂL, V() =0.0

A topological space X with the property (ii) is called noetherian. Notice that (ii)
and (iii) are equivalent properties (compare the corresponding properties in noetherian
rings, cf. [La2, p. 142]. X is quasi-compact if it has the property of (iv).

1.1.6. Exercise. A closed subset of a noetherian space is noetherian for the induced
topology.

1.2. Irreducibility of topological spaces

1.2.1. A topological space X (assumed to be non-empty) is reducible if it is the
union of two proper closed subsets. Otherwise X is irreducible. A subset A C X is
irreducible if it is irreducible for the induced topology. Notice that X is irreducible if
and only if any two non-empty open subsets of X have a non-empty intersection.

1.2.2. Exercise. An irreducible Hausdorff space is reduced to a point.

1.2.3. Lemma. Let X be a topological space.
(i) A C X is irreducible if and only if its closure A is irreducible;

" (ii) Let f : X — Y be a continuous map to a topological space Y. If X is irreducible
then so is the image fX.

Let A be irreducible. If A is the union of two closed subsets A; and A, then A is
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the union of the closed subsets A N A} and A N A;. Because of the irreducibility of
A, we have (say) AN A, = A,and A C Ay, A C A;. So A is irreducible.
Conversely, assume this to be the case. If A is the union of two closed subsets
AN B,,.A N B,, where B;, B, are closed in X, then A C B; U B,. It follows that
AN B; = A, whence AN B; = A. The irreducibility of A follows.
The proof of (ii) is easy and can be omitted. O

1.2.4. Proposition. Let X be a noetherian topological space. Then X has finitely
many maximal irreducible subsets. These are closed and cover X.

It is clear from 1.2.3 (i) that maximal irreducible subsets of X are closed.

Next we claim that X is a union of finitely many irreducible closed subsets. As-
sume this to be false. Then the noetherian property 1.1.5 (ii) and 1.1.6 imply that
there is a minimal non-empty closed subset A of X which is not a finite union of irre-
ducible closed subsets. But A must be reducible, so it is a union of two proper closed
subsets. Because of the minimality of A these have the property in question, and a
contradiction emerges. This establishes the claim.

Let X = X, U ..U X;, where the X; are irreducible and closed. We may as-
sume that there are no inclusions among them. If ¥ is an irreducible subset of X then
Y = NX;)U..U(Y N X,) and by the definition of irreducibility we must have
Y C X; for some i, i.e., any irreducible subset of X is contained in one of the X;.
This implies that the X; are the maximal irreducible subsets of X. The proposition
follows. ]

The maximal irreducible subsets of X are called the (irreducible) components of
X

We now return to the Zariski topology on V = k”.

1.2.5. Proposition. A closed subset X of V is irreducible if and only if T(X) is a
prime ideal.

Let X be irreducible and let f, g € S be such that fg € Z(X). Then
X=XNV(HHUXNVES)

and the irreducibility of X implies that (say) X C V(fS), which means that f €
Z(X). It follows that Z(X) is a prime ideal.

Conversely, assume this to be the case and let X = V(1) UV(l,) = V({, N I).
If X # V(I)), then there is f € I, with f & Z(X). Since fg € Z(X) forallg € I,
it follows from the primeness of Z(X) that I; C Z(X), whence X = V(I;). So X is
irreducible. (]

1.2.6. Exercises. (1) Let X be a noetherian space. The components of X are its



4 Chapter 1. Some Algebraic Geometry

maximal irreducible closed subsets.
(2) Any radical ideal / of S is an intersection / = P, N ... N P; of prime ideals. If
there are no inclusions among them, they are uniquely determined, up to order.

1.2.7. Recall that a topological space is connected if it is not the union of two disjoint
proper closed subsets. An irreducible space is connected. The following exercises
give some results on connectedness and the relation with the notion of irreducibility.

1.2.8. Exercises. (1) (a) A noetherian space X is a disjoint union of finitely many

connected closed subsets, its connected components. They are uniquely determined.
(b) A connected component of X is a union of irreducible components.

(2) A closed subset X of V = k" is not connected if and only if there are two ideals

L, LinSwithl{ + L, =S8, 1Nl =I(X).

(3) Let X = {(x,y) € k* | xy = 0}. Then X is a closed subset of k? which is con-

nected but not irreducible.

1.3. Affine algebras

1.3.1. We now turn to more intrinsic descriptions of algebraic sets. Let X C V be one.
The restriction to X of the polynomial functions of § form a k-algebra isomorphic to
S§/Z(X), which we denote by k[ X]. This algebra has the following properties:

(a) k[X) is a k-algebra of finite type, i.e., there is a finite subset { f, ... , f,} of k[X]
such that k[ X] = k[ fi,... . f;];

(b) k[ X] is reduced, i.e., 0 is the only nilpotent element of k[ X].

A k-algebra with these two properties is called an affine k-algebra. If A is an
affine k-algebra, then there is an algebraic subset X of some k" such that A ~ k[X].
For A ~ k[T, ..., T,]/1, where I is the kernel of the homomorphism sending the T;
to the generator f; of A (as in (a)), then A is reduced if and only if / is a radical ideal.
We call k[X] the affine algebra of X.

1.3.2. We next show that the algebraic set X and its Zariski topology are determined
by the algebra k[ X].

If 7 is an ideal in k[X] let Vx () be the set of the x € X with f(x) = O for all
f € 1. If Y is asubset of X let Zy (Y) be the ideal in k[ X] of the f such that f(y) =0
forall y € Y. If A is any affine algebra, let Max(A) be the set of its maximal ideals. If
X is as before and x € X, then M, = Zx({x}) is a maximal ideal (because k[X]/M,
is isomorphic to the field k).

1.3.3. Proposition. (i) The map x — M, is a bijection of X onto Max(k[X]), more-
over x € Vx(I) ifandonly if | C M,;
(ii) The closed sets of X are the Vx(I), I running through the ideals of k[ X].
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Since k[X] =~ §/Z(X) the maximal ideals k[X] correspond to the maximal ideals
of § containing Z(X). Let M be a maximal ideal of S. Then 1.1.4 (3) and 1.1.5 (ii)
imply that M is the set of all f € § vanishing at some point of k". From this the first
point of (i) follows, and the second point is obvious. (ii) is a direct consequence of
the definition of the Zariski topology of X. ]

From 1.3.3 we see that the algebra k[ X] completely determines X and its Zariski
topology.

1.3.4. Exercises. (1) For any ideal / of k[X] we have Ix(Vx(I)) = ./I; for any
subset ¥ of X we have Vx(Zx(Y)) =Y.
(2) The map Ty defines a bijection of the family of Zariski-closed subsets of X onto
the family of radical ideals of k[ X], with inverse Vy.
(3) Let A be an affine k-algebra. Define a bijection of Max(A) onto the set of homo-
morphisms of k-algebras A — k.
(4) Let X be an algebraic set.

(a) X is irreducible if and only if k[ X] is an integral domain (i.e., does not contain
zero divisors # 0).

(b) X is connected if and only if the following holds: if f € k[X] and f 2 =
f.f #0then f =1.

(c) Let X, ..., X, be the irreducible components of X. If X; N X; = @ for
1 <i,j<s, i j,then there is an isomorphism k[X] — @, .., k[Xi], defined
by the restriction maps k[X] — k[X;]. o

1.3.5. We shall have to consider locally defined functions on X. For this we need
special open subsets of X, which we now introduce.

If f € k[X] put
Dx(f)=D(f)={xe€ X | f(x) # 0}

This is an open set, namely the complement of V(fk[X]). We have

D(fg) = D(f)ND(g), D(f") = D(f) (n = 1).

The D( f) are called principal open subsets of X.

1.3.6. Lemma. (i) If f,g € k[X] and D(f) C D(g) then f" € gk[X] for some
n>1;
(ii) The principal open sets form a basis of the topology of X.

Using 1.1.4 (3) we see that D(f) C D(g) if and only if ./(fk[X]) C /(gk[X]).
which implies (i). (ii) is equivalent to the statement that every closed set in X is an
intersection of sets of the form Vyx (fk[X]). This is obvious from the definitions. O



