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Preface to the Series
in Information and Computational Science

Since the 1970s, Science Press has published more than thirty volumes in its series
Monographs in Computational Methods. This series was established and led by the late
academician, Feng Kang, the founding director of the Computing Center of the Chinese Academy
of Sciences. The monograph series has provided timely information of the frontier directions and
latest research results in computational mathematics. It has had great impact on young scientists
and the entire research community, and has played a very important role in the development of
computational mathematics in China.

To cope with these new scientific developments, the Ministry of Education of the People’s
Republic of China in 1998 combined several subjects, such as computational mathematics,
numerical algorithms, information science, and operations research and optimal control, into a new
discipline called Information and Computational Science. As a result, Science Press also
reorganized the editorial board of the monograph series and changed its name to Series in
Information and Computational Science. The first editorial board meeting was held in Beijing in
September 2004, and it discussed the new objectives, and the directions and contents of the new
monograph series.

The aim of the new series is to present the state of the art in Information and Computational
Science to senior undergraduate and graduate students, as well as to scientists working in these
fields. Hence, the series will provide concrete and systematic expositions of the advances in
information and computational science, encompassing also related interdisciplinary developments.

I would like to thank the previous editorial board members and assistants, and all the
mathematicians who have contributed significantly to the monograph series on Computational
Methods. As a result of their contributions the monograph series achieved an outstanding
reputation in the community. I sincerely wish that we will extend this support to the new Series in
Information and Computational Science, so that the new series can equally enhance the scientific

development in information and computational science in this century.

Shi Zhongci
2005.7



Preface

Computational fluid dynamics (CFD) uses large scale numerical computation to
solve problems of fluid flow. It has been known since its onset that the nﬁmerical SO~
lution to a given flow depends on the relation between the flow and the coordinates
(mesh) used to compute it. Each of the two well-known coordinate systems for
describing fluid flow—FEulerian and Lagrangian—has advantages as well as draw-
backs. Eulerian method is relatively simple, but its drawbacks are: @ it smears
contact discontinuities badly; @ it needs generating a body-fitted mesh prior to
computing flow past a body. Lagrangian method, by contrast, resolves contact
discontinuities (including material interfaces and free surfaces) sharply, but it also
has drawbacks: @ the gas dynamics equations could not be written in conserva-
tion partial differential equations (PDE) form, rendering numerical computation
complicated; @ it breaks down due to cell deformation.

A fundamental issue in CFD is, therefore, the role of coordinates and, in par-
ticular, the search for “optimal” coordinates. It is in the long search for an optimal
coordinate system that a unified coordinate (UC) system was developed by the first
author and his collaborators over the last decade. While fhe search for an opti-
mal coordinate system in CFD would undoubtedly continue, the unified coordinate
system developed so far is found to combine the advantages of both Eulerian and
Lagrangian system, while avoiding their drawbacks. Indeed, it goes beyond these.
For instance, the UC system provides a foundation for automatic mesh generation
by the flow being computed.

This monograph first reviews the relative advantages and drawbacks of Eulerian
and Lagrangian coordinates as well as the Arbitrary-Lagrangian-Eulerian (ALE)
and various moving mesh methods in CFD for one- and multi-dimensional flow.
It then systematically introduces the unified coordinate approach to CFD, illus-
trated with numerous examples and comparisons to clarify its relation with existing
approaches.

The content of this monograph is based on a graduate course taught by the first
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author from 2000 to 2007 at the Hong Kong University of Science and Technology,
Academia Sinica in Taiwan, Hong Kong Polytechnic University and Hong Kong
Baptist University, and by the second author since 2009. We thank Prof. T.
Tang for his comments on the first draft of the book. We also acknowledge the
permission of Communication in Computational Physics (CiCP) for allowing us to
use the material presented in a review paper@'.

Many scientists have made substantial contributions in the course of develop-
ment of the UC approach to CFD. Here is a partial list: Chien-Cheng Chang, De-
Lin Chu, Bo Gao, Yuan-Ping He, Jeu-Jiun Hu, Changqiu Jin, Sergei Kudriakov,
Chih-Yu Kuo, Claude Lepage, Zuo-Wu Li, Ping-Yiu Li, Meng-Sing Liou, Ching
Yuen Loh, Yang-Yao Niu, Keh-Ming Shyue, Ronald Ming Cho So, Yih-Chin Tai,
Henry Van Roeséelr Zi-Niu Wu, Jaw-Yen Yang, Gui-Ping Zhao, Yanchun Zhao.
Without their valuable contributions, the UC approach to CFD could not have
reached its current state of maturity. We also thank our secretary Odissa Wong
for her help for many years in editing and preparing the figures. We give special
thanks to our wives, Kwok Lan Hui and Jie Shen, for their strong support to us in
writing this monograph.

The publication of the current monograph gets financial support from China
Science and Technology Publication Fund, and National Natural Science Founda-
tion of China through Project No.10928205.

Wai-How Hui
Kun Xu
Hong Kong University of Science and Technology
December 1, 2011

@ The unified coordinate system in computational fluid dynamics. Communications in
Computational Physics, 2: 577-610, 2007.
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Chapter 1

Introduction

1.1 CFD as Numerical Solution to Nonlinear Hyperbolic
PDEs

The great majority of research work in CFD, especially those in the first several
decades, treats it as numerical solution to nonlinear hyperbolic partial differential
equations (PDEs). For a good summary, see Hirsch(!). Most part of this monograph
also treats CFD as numerical solution to nonlinear hyperbolic PDEs. But it is
concerned mainly about the role of coordinates in CFD and, in particular, will
base all CFD study on the newly discovered unified coordinates. To put it in
perspective we shall first give an overview of the major developments of CFD as
numerical solution to the initial value problem of nonlinear hyperbolic PDEs as
follows.

The theoretical foundation for nonlinear hyperbolic PDEs was laid by Riemann
in his pioneering work!? where he introduced the concept of Riémann invariants
and posed the special initial value problem—since has been known as the Riemann
problem. It turns out that the Riemann problem plays a central role in most
numerical methods in CFD.

Nothing very significant happened during the following six decades until Richard-
son proposed weather prediction by numerical process (Lewis Fry Richardson, Cam-
bridge University Press, 1922). Even without an electronic computer, wanting to
find numerical solutions to nonlinear hyperbolic PDEs immediately raises many in-
teresting theoretical and practical questions, and progresses are made in answering
them.

(1) The first of these is the discovery of the CFL condition[®. It simply says
that in a time-marching process to find a numerical solution, marching too fast

causes numerical instability and destroys the solution.
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(2) Practical methods for computing solutions with shock discontinuities are
developed: the artificial viscosity method of von Neumann and Richtmyer which
smears shock discontinuities(?; the Godunov method which reduces the general
initial value problem to a sequence of Riemann problems with cell-averaging datal®;
the Glimm random choice method which also reduces the general initial value
problem to a sequence of Riemann problems but with data of randomly chosen
representative states® 7); and the shock-fitting (front tracking) method®. The
last two methods are not easily extended to the three-dimensional flow.

(3) A very important discovery was made by Lax and Wendroffl® that in order
to numerically capture shock discontinuities correctly, the governing PDE should
be written in conservation form to begin with. This is easily done in Eulerian
coordinates (in ény dimensions) and also for one-dimensional flow in Lagrangian
coordinates. But for é long time, it was not known how to use Lagrangian coordi-
nates to write the governing PDEs for multidimensional flows in conservation form.
This problem was solved by Hui et al.[%],

(4) To extend Godunov’s method to higher order accuracy, the important con-
cepts of limiters and TVD were introduced which avoid non-physical oscillations
in high resolution schemes!!!> 12],

(5) From the onset of CFD, it was known that the numerical solution to a given
flow depends on the coordinates (mesh) used to compute it; hence great efforts
have been devoted to search for the optimum coordinate system: the Particle-
in-Cell method!!3l; the Arbitrary-Lagrangian-Eulerian method!'¥l; various moving
mesh methods!'5); and the unified coordinate method!*?!.

(6) Finally, to compute a flow past a body, which is the central problem in
fluid dynamics, it is necessary to construct a body-fitted mesh prior to computing
the flow. Even after decades of research, mesh-generation remains tedious and
time-consuming. The unified coordinate approach to CFD has opened up a way of

automatic mesh-generation!!9,
1.2 Role of Coordinates in CFD

1.2.1 Theoretical Issues

For more than 200 years, two famous coordinate systems have existed for describing

fluid flow: Eulerian system is fixed in space, whereas Lagrangian system follows
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the fluid. An immediate question arises:

“Are these two coordinate systems equivalent to each other theoretically?”’

This question must have been asked by numerous researchers in fluid dynamics
(FD), and the answer presumably was positive. Surprisingly, the first mathematical
proof of equivalency, meaning the existence of a one-to-one map between the two
sets of weak solutions obtained by using the two systems, was given as late as 1987
by Wagner(!” and holds only for one-dimensional flow”. For 2-D and 3-D flows,
Hui et al.'% 18] showed that they are not equivalent to each other theoretically
(see Section 8.3).

Although Lagrangian and Eulerian approaches to FD are each self-contained
and general, prior to the advent of computer most text books [19—22] are written
in Eulerian coordinates, with the exception of [23], which is devoted solely to
Lagrangian approach. There are at least two reasons for this historical bias.

Firstly, steady flow is the most important class of flow in application of FD,
and Eulerian coordinate system has a clear advantage in describing it: the time
variable drops out, reducing the number of independent variables from 4 to 3.
This greatly simplifies the mathematics of the governing equations. By contrast,
the time variable in Lagrangian coordinates is essential and cannot disappear, so.
apparently we still need 4 independent variables for three-dimensional flow even
when the flow is steady. Of course, one might argue that among the 4 apparent
independent variables, there must be a relation expressing the steadiness of the flow.
Indeed, such a relation does exist, see Eq.(20) in [24], but it is solution;dependent;
hence without knowing the flow solution it is difficult to use the relation to reduce
the number of independent variables from 4 to 3. On the other hand, when the
flow solution is known there is no need to use that relation. This is the dilemma of
Lagrangian approach for steady flow: the governing equations of FD in Lagrangian
coordinates do not simplify as Eulerian coordinates do, and steady flow has to be
obtained by solving the unsteady flow equations. This dilemma was resolved in
[25—27] when the Lagrangian time variable was introduced which played the dual
role as time and as a Lagrangian label (see also the variable X in (9.4) when h = 1).

Secondly, in the problem of flow past a body, which is the central problem

@ In the presence of a vacuum, the definition of weak solution for the Lagrangian equations
must be strengthened to admit test functions which are discontinuous at the vacuum.
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in FD, very often one is interested only in the flow quantities on the body sur-
face, e.g., pressure, temperature, velocity and shear stresses on the airfoil surface.
Eulerian approach naturally and easily produces these quantities. By contrast, in
Lagrangian approach, we need to calculate the motion histories of all fluid particles
and then trace them back to find the flow quantities on the body surface. This is
quite cumbersome.

With the advent of computer and the birth of computational fluid dynamics, the
advantages and drawbacks of Eulerian and Lagrangian approach need be critically

re-examined from the computational point of view.
1.2.2 Computational Issues

Computationally, Eulerian and Lagrangian systems are not equivalent even for 1-D
flow. Indeed, it haé been known since the onset of CFD that the numerical solution
to a given flow depends on the relation between the flow and the coordinates used
to compute it. For 1-D flow, we shall show in Chapter 4 that Lagrangian system
is superior to the Eulerian and, in turn, the UC (i.e., the generalized Lagrangian
plus shock-adaptive Godunov scheme) is superior to both the Lagrangian and the
Eulerian, and is completely satisfactory.

The situation for 2-D and 3-D flow is more complicated. Each of the two well-
known coordinate systems for describing fluid flow has advantages as well as draw-
backs. Eulerian method is relatively simple, but its drawbacks are: @ it smears
contact discontinuities badly; @ it needs generating a body-fitted mesh prior to
computing flow past a body. Lagrangian method, by contrast, resolves contact
discontinuities (including material interfaces and free surfaces) sharply, but it also
has drawbacks: @ the gas dynamics equations could not be written in conserva-
tion partial differential equations (PDE) form, rendering numerical computation
corﬁplicated; @) it breaks down due to cell deformation.

A fundamental issue in CFD is, therefore, the role of coordinates and, in par-
ticular, the search for “optimal” coordinates. The search for optimal coordinates
has led to the development of the unified coordinate (UC) systemm], in a series
papers beginning with [25—27]. See also [29—33]. This monograph first reviews the
relative advantages and drawbacks of Eulerian and Lagrangian coordinates in CFD

for 1-D and multi-dimensional flow, and then systematically discusses the unified
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coordinate system and its applications.

For 1-D flow, UC uses a material coordinate and also applies the shock-adaptive
Godunov scheme [34—36] instead of the classical Godunov schemel®). For 2-D flow,
it uses one material coordinate, with the other coordinate determined so as to
preserve mesh othorgonality (or preserve the Jacobian), whereas for 3-D flow, it
uses two material coordinates, with the third one determined so as to preserve
mesh skewness (or preserve the Jacobian). The unified coordinate system may be
regarded as a generalization of Lagrangian system. It combines the advantages of
both Eulerian and Lagrangian system while avoiding their drawbacks. The UC
formulation also provides a foundation for automatic mesh-generation by the flow
being computed. It may also be regarded as a moving mesh method in that the
mesh can move in any manner, while the effects of its movement on the flow are

fully accounted for.

1.3 Outline of the Book

This book is arranged as follows: Derivation of the equations of physical conser-
vation laws are given in Chapter 2. Chapter 3 reviews shock-capturing methods
for 1-D flow based on Eulerian coordinates, pointing out their defects. Although
most of the materials in Chapters 2 and 3 can be found in existing texts, e.g.,
Ref. [1, 37—39], they are included here to give a smooth introduction to the main
theme of this monograph and also to make it self-contained. Chapter 4 introduces
UC method for 1-D flow and shows how all defects of Eulerian and Lagrangian
computation are cured or avoided by UC. Chapter 5 comments on the difficul-
ties encountered in current computational methods for the general case of multi-
dimensional unsteady flow. Chapter 6 gives the unified coordinates formulation
of CFD for multi-dimensional unsteady flow, whose mathematical properties are
studied in Chapter 7. Chapter 8 is devoted to the very important special case of
Lagrangian gas dynamics. Chapter 9 uses UC to study the simpler problem of
steady 2-D supersonic flow, showing that it can be solved essentially as 1-D un-
steady flow. 3-D steady supersonic flow is also discussed. Chapter 10 discusses the
general case of unsteady flow computation using UC, illustrated with typical ex-
amples and comparisons with existing methods. Chapter 11 discusses viscous flow

computation. Chapter 12 is devoted to the applications of the unified coordinates
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to kinetic theory. Finally, a summary of the book is given in Chapter 13.
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