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Preface

The analysis of electronic relaxation processes, especially of radiationless transitions
in molecular systems, has rapidly evolved in the last few decades and today plays a
central role in almost all investigations of molecular physics and spectroscopy. The
development of lasers has significantly contributed to this evolution. The purpose of
this book is to give a self-contained and unified presentation of this development,
with applications to molecular and solid-state physics. It is primarily intended for
graduate students in theoretical physics and chemistry, who are beginning their
research careers, although it is hoped that any physicist and chemist working with
lasers, molecular spectroscopy, and solid-state physics will also find it useful. The
greatest possible emphasis has been placed on clarity, and to this end, presentation is
often made in strict mathematical detail. I hope that the reader will thus be able to
rederive many of the formulas presented without much difficulty. Some basic
understanding of symmetry principles in solid state and molecular physics may
be helpful for the reader.

The book consists of eight chapters and several appendices. In Chapter 1, the
different basis sets used to classify molecular eigenstates and to study molecular
dynamics, including molecular vibrations, are discussed within the context of the
Duschinsky mixing effect. This mixing caused by the normal coordinate rotation has
been elucidated further in following chapters.

In Chapter 2, the treatment of radiationless transition probability is presented on
the basis of Green’s function formulation for the transition amplitude, in which the
states of interest are selected by suitable projection operators. A discussion of the
proper basis set for describing electronic relaxation processes in large molecules is
given for each of the cases treated.

Chapter 3 provides a detailed description of radiationless processes in a statistical
large molecule embedded in an inert medium. In this chapter, we are for the first
time able to express the vibrational overlap between the electronic states under
consideration in terms of intramolecular distributions in the full harmonic approx-
imation taking into account the effects of vibrational frequency distortion, potential
surface displacement, and the Duschinsky rotation.

Chapter 4 deals in greater detail with the symmetry properties, the evaluation and
presentation of the intramolecular distributions for arbitrary vibrational degrees of
freedom.
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An important example of the utility and power of the aforementioned intramo-
lecular distributions is presented in Chapter 5. This chapter, which is of a more
advanced nature, is entirely devoted to the investigation of the nuclear dependence
of the electronic matrix element for radiationless transitions. It leads the reader,
employing a class of integrals found in Appendix D, to a fix-point theorem for
determining the g-centroid at which the electronic matrix element is to be evaluated.
[t is not recommended that the reader uninterruptedly attempt to master all of these
derivations that lead to the proofs of the fundamental theorems. Instead, this chapter
or a part of it, may be bypassed on the first reading, proceeding to the less complex
following chapters and referring back, as necessary.

Chapter 6 deals with the time evolution of radiative decaying states of polyatomic
molecules with special emphasis on radiative decay in internal conversion. The
decay of a manifold of closely spaced coupled states is handled by the Green’s
function formalism, where the matrix elements are displayed in an energy repre-
sentation that involves either the Born—-Oppenheimer or the molecular eigenstate
basis set. The features of radiationless transitions in large, medium-sized, and small
molecules are elucidated, deriving general expressions for the radiative decay times
and for the fluorescence quantum yields.

Chapter 7 introduces the reader to solutions of many selected problems in
molecular physics. In particular, the following important problems are studied in
detail: the fluorescence spectrum of p-terphenyl crystal, the vibrational fine structure
of the spin-allowed absorption band of trans-[Co(CN),(tn),]CI3H,0, and transport
phenomena of electronic excitation in pentacene-doped molecular crystals. It is
followed by an analysis of phosphorescence and radiationless transition in aromatic
molecules with nonbonding electrons as well as predissociation of the *B, state of
H,0" by nonadiabatic interaction via conical intersection.

Finally, Chapter 8 deals with the evaluation of multidimensional Franck—Condon
integrals. As an illustration of the complexity of the latter upon the normal mode
rotation, a study of sequential two photon processes is presented.

At the beginning of each chapter, there is a brief summary of what the reader will
find in the particular chapter. These summaries provide a detailed survey of the
subject matter covered in this book. No attempt was made to provide all-inclusive
references. References are not prioritized and are presented as supplementary
reading for students.

Some people have made important contributions to this book at various stages of
its development. In particular, I would like to mention here my scientific colleagues
G. Olbrich, C. Kryschi, D. Gherban, A. Urushiyama, J. Degen, Th. Ledwig, and P.H.
Cribb. In addition, I wish to express my deep appreciation to G. Moss for suggested
improvements to text readability and to G. Pauli for preparing most of the graphics,
which form an essential part of the presentation.

December 2008 Hans J. Kupka
Diisseldorf, Germany
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1
Introduction

In this chapter we shall provide a brief overview of a number of different basis sets to
classify molecular eigenstates and study molecular dynamics. The basic procedure is
described in Section 1.1, where the solution of the Schrodinger equation for the
molecular system is given by separating the electronic motion from the nuclear
motion in the molecule. This procedure, called the adiabatic description, represents
the basis set that most often describes the initially excited states in large molecules.
Alternatively, Section 1.1.3 introduces the crude Born-Oppenheimer (BO) basis, and
Section 1.1.4 gives a description of the Herzberg—Teller adiabatic approximation.
Sections 1.2 and 1.3 are devoted to the vibrational wavefunctions and their normal
coordinates as well as to the Duschinsky effect. Section 1.4 concludes the chapter with
a mathematical analysis of two strongly coupled adiabatic states, one of the funda-
mental and difficult problems of physics. The analysis is performed by using a
diabatic basis set, and as an application a formal and compact solution is derived for
the predissociation of a triatomic molecule via a conical intersection.

We assume that the reader is familiar with the basic notions of quantum theory.
However, to make our study reasonably self-contained, we have included some of the
derivations in the appendices.

1.1
The Adiabatic Description of Molecules

1.1.1
Preliminaries

In the treatment of electronic states in large molecules, one usually neglects the
details concerning the rotation and translation motions and rather concentrates on
the dynamics of the electronic and vibrational motions. The starting point for the
description of these motions in a molecule consisting of electrons and Knuclei is the
complete Hamiltonian H of the molecule. To write down the Hamiltonian, the origin
of the molecular coordinate system is placed at the center of mass. [t is assumed that
the positions of the K nuclei will deviate only by small amounts from some reference

Transitions in Molecular Systems. Hans |. Kupka
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configuration. The molecules with large amplitude motions, such as internal
rotations, are therefore explicitly excluded. The nuclear inertia tensor is then
approximated by the inertia tensor of the reference configuration and the axes of
the internal coordinate system are directed along the principal axes of this reference
inertia tensor. If now the center of mass motion is removed, the nuclear motion can
be described by a vector of 3K — 6 dimensions for a (nonlinear) system with K atoms.
The latter are normally taken as linear combinations of mass-weighted vectors
describing the displacements from the reference configuration [1-3]. With this
approximation and, for the sake of simplicity, taking only the electrostatic Coulomb
interaction, the vibronic Hamiltonian can be written as

H = To(r) + Tn(q) + Ulr.q). (1.1)

Here the vector r=(rj.r,,....r,) where r; = (x;,yi.z;) denotes collectively all
electronic coordinates and the coordinates of the nuclei are specified by
q="(q1-92----. gn). where N = 3K—6. In the following, we shall adopt the conven-
tion that the components of the vector q are labeled by Greek indices if they range
from 1 to N, and the Latin ones denote the components of the electronic coordinates.
The electronic kinetic energy operator T.(r) and the nuclear kinetic operator Ty(q)
are presented in a diagonal form:

n /o
Te(r) =~ ﬁ) (? (1.2)

and

h} -\’2
TN(q)*—Z<7) (;qz> (13)

where m is the mass of the electron and g, are mass-weighted (dimensioned) nuclear
coordinates given by

R =Ry +M 2Aq.

where R and Ry are (3K—6)-dimensional column vectors of the instantaneous and
equilibrium Cartesian coordinates, respectively, associated with the nonzero fre-
quency normal modes. M is the (3K—6) x (3K—6) mass-weighted matrix, A is the
orthogonal transformation that diagonalizes the mass-weighted Cartesian force
constant matrix, and q is the dimensioned normal coordinate vector. U(r.q) in
Equation 1.1 is the total (internal) potential energy and includes all the electro-
n—electron, nucleus—nucleus, and electron-nucleus interactions. In spite of the
approximation already made, the exact molecular vibronic eigenstates ‘/(r.q) in a
stationary state satisfy the time-independent Schrodinger equation

[Te(r) + Tn(q) + Ulr,q)] W(r.q) = E W(r.q). (1.4)

Serious approximations become necessary when one tries to solve Equation 1.4. One
of these solutions is the adiabatic separation, which will be outlined below. This
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outline will serve as a guide to the possible classifications of molecular states and as
an aid to the solution of specific quantum mechanical problems.

1.1.2
The Born-Oppenheimer Approximation

The first step of the adiabatic description is the Born—-Oppenheimer approximation,
according to which

the nuclear kinetic energy is neglected, and
the nuclear configuration is fixed at the position R.

The adiabatic approximation is based on the fact that typical electronic velocities
are much greater than typical nuclear (ionic) velocities. (The significant electronic
velocity is v = 10® cm/s, whereas typical nuclear velocities are at most of order
10° cm/s.) One therefore assumes that, because the nuclei have much lower
velocities than the electrons, at any moment the electrons will be in their ground
state for that particular instantaneous nuclear configuration.

Under circumstances where Ty(q) = 0, and at particular arrangement of the ion
cores, we can separate electronic and nuclear motions. This can be accomplished by
selecting some basis set of electronic wavefunctions ¢, (r: q), which satisfy the partial
Schrodinger equation

[Te(r) + U(r.q)| ¢,(r:q) = Ei(q) ¢,(r:q). (1.5)

where E,(q) corresponds to the electronic energy at this fixed nuclear configuration.
The configuration q is chosen arbitrarily, but for the solution of Equation 1.5 it
must be fixed. In other words, the electronic wavefunction ¢,(r:q) depends on
the electronic coordinate r and parametrically on the nuclear coordinates. For any
value of q, the ¢, are assumed to be orthonormal and complete (i.e., span the
subspace defined by the electronic coordinates r). They are also assumed to vary in a
continuous manner with q. The total (molecular) wavefunction W(r.q) can be
expanded in terms of the electronic basis function [4, 5]

Wy(r.q) = Y 9y(r:qQ)n(q)- (1.6)
h

where the nuclear wavefunctions y,,,(q) are initially treated as coefficients in the
series (1.6). These coefficients are selected such that Equation 1.4 is satisfied. We have
to substitute Equation 1.6 for W(r,q) in Equation 1.4. Remarking that

0? o @y Ot e
(f(fb}IJV) - —\q;b va+2’:(ﬂﬁi t+ Py —\XZ} (17)
aq, aqy COqu Cqn Oy

and
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we find according to Equation 1.6 that

HZ Py = Z {E;,(q)‘oh(r:q)xwm + Tn(Q)@,(r:q)x4 (q)
b

b
h*\ 29, (r: q) Oy (q)
¥ZZ ( > (qu (q +(P,,(l' q TN((]))'U‘( )

= EZ‘PM“‘UXM‘U-
b

In deducing this result, we have used Equation 1.5 and the fact that the wavefunction
¢, isan eigenfunction of Equation 1.5. Multiplying from the left by ¢, and integrating
over the electronic coordinates, we obtain the usual set of coupled equations for the
Yav [4, 5] (see also Ref. [6] with modifications given by McLachlan [7] and Kolos [8]):

[Tx(Q) + Ea() + (@a] Tn|@,) — Elxo ()
T z {(@PHITN((])'(‘)}JI'*Z Z‘hl/2)<(p.l’a/oq“l(‘Ph)»a/aq“}Xh\v(q) =0.
b7a 1

(1.8a)

The restriction b # a in Equation 1.8a is a consequence of the orthonormality of the
©y. (9,]0,), = 04p. Here and in Equation 1.8a, angle brackets indicate integration
over the electronic coordinates only. To avoid confusion resulting from numerous
subscripts, it is often convenient to adopt a matrix notation, writing Equation 1.8a as

{TN (q) i Eﬂ + <(palTN q)‘(pu Xav Z Xubxln ( ]Sb)

b#a

where X, = —(9,|[Tn. ¢,]), and [A, B| = AB— BA. The adiabatic approximation (or
BO adiabatic approximation in the nomenclature of Ballhausen and Hansen) is
obtained by neglecting the coupling term in Equation 1.8a (the expression in the curly
brackets). The molecular wavefunction now reduces to the simple product

Wa(r.q) = @, (r:q)x.(q) (1.9)

and the corresponding equation for the nuclear function y,,,(q) in this approximation
has the form

[Tn(q) + Ea(Q))uy () = Ea¥ay(qQ). (1.10)

where E,, is the eigenvalue for the vth vibrational level in the ath electronic state.
Thus, from Equations 1.5 and 1.10, we see that, in the BO approximation, the nuclei
move in an effective potential E,(q) generated by the electron distribution, while the
electron distribution is a function of the nuclear configuration q. E,(q) is designated
as the adiabatic potential surface of ¢,. The additional diagonal term {(@,|Tx(q)|®, ),
in Equation 1.8 is omitted in the BO approximation, as we have done in Equation 1.10.
Alternatively, if this term (designated as the adiabatic correction to the potential
energy surface) is taken into account, we speak of the Born—-Huang approximation [5].
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From numerical calculations of the low-lying electronic states of H, * and Hj, it is
known that this correction is invariably small [9, 10] and can usually be neglected.

The approximate wavefunctions of the adiabatic approximation are characterized
by the following off-diagonal matrix elements between different electronic states [11]:

(<lpuv|H|lpuv‘>,»)q = Eﬂvbw’ (111)
(i.e., the adiabatic basis set is diagonal within the same electronic configuration) and
((LPHV‘ H|ll‘h\/'>r- )‘I = (Xuv(@a ‘ Tn |(Ph> Kby )q

Y (xuv<w..!?'/?qu\tph>,ﬂxhv1/0qu)q- (1.12)
T

In Equation 1.12, we have indicated convenient abbreviations for the two integrals:
(| |) for the integral over electronic coordinates and (| |) for the integral over nuclear
coordinates. Equation 1.12 represents the so-called Born—-Oppenheimer coupling,
which promotes transitions between potential energy surfaces via the nuclear kinetic
energy operator. If these terms in the basis defined by Equation 1.9 are small relative
to the separation of vibronic states E,, — Ej,, the BO approximation will give a very
good approximation and will lead to tremendous simplification. In the case of
close lying vibronic states belonging to different electronic configurations
Euw = Epy, the adiabatic approximation can fail. The interaction of nuclear vibrations
with the electronic motion in molecules gives rise to interesting effects that have been
attributed to linear and quadratic terms in the nuclear displacements from the
equilibrium configuration. Linear vibronic coupling terms lead to vibrational bor-
rowing, an effect that appears most clearly with forbidden electronic transitions made
allowed through the simultaneous excitation of certain asymmetric vibrations. The
other physical situations associated with linear displacements along certain asym-
metric normal coordinates lead to the Jahn—Teller [12-25] and the pseudo-Jahn—Teller
effects (see Appendix K). The effect of quadratic nuclear displacement terms is
manifested in the Renner effect [26]. Although the study of these effects is of
considerable interest, their observation is limited to systems of high symmetry that
have degenerate or nearly degenerate electronic states.

Going back to expression (1.12) for the coupling term, we shall now elucidate the
situation that occurs when the potential energy surfaces belonging to different
electronic states cross. This is easily obtained on introducing the following expres-
sions [27]:

(Ey(q)—Ea(q)](0,]0/0qu |9p) = (0,|0U/0q,] @) (1.13)

and

[Ey(@)—Es(a)) (.0 /062 0y ) = (0.0 U /g

)+ 200, 00030 el
(1.14)

In the region where the two potential energy surfaces do not cross, E.(q) # Ex(q).
Equation 1.13 may obviously be rewritten as

(@,]0/0au|@p) = (0,|2U /3y |@,)/ [En(q)— Ea(q)] (1.15)
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and relation (1.15) is well behaved. At the surface intersections E.(q)= F,(q),
relation (1.15) is not as such without further ado valid. To see this, we differentiate
the general expression (1.13) with respect to g, and then evaluate the result at the
surface intersection to yield

(@.[0/0g,|@p) = [0(0,|0U /g, |@;)/0q,] / [0Es/Oqu—OE, /0gy]. (1.16)

where we have assumed, for simplicity, that the intersection surface results from the
variation of a single coordinate g, and that (0E,/0q, ). # (0E,/Cq, ), at the intersec-
tion point c. This means that (¢,|C/Cq,|¢,) is well behaved over the whole range of
values of g,. Indeed, Equation 1.16 can be rederived directly from Equation 1.15 by
applying I'Hospital’s rule. Expression (1.15) should likewise be well behaved (non-
singular) in the more general case of multidimensional surface intersections, where
g, in Equation 1.16 denotes the coordinate normal to the intersection surface defined
by E.(q) = E,(q). The property of (¢,[0?/ F‘qf, [p,) and its nonsingularity clearly follow
in a completely analogous way.

The behavior of (¢,[0/0g,|¢,) and (¢, 0’ /2q?|¢,) has been examined in Ref. [28]
for H, ' as a function of the internuclear distance R. Both these quantities were
shown to vary smoothly with R. Subsequently, Nitzan and Jortner [29] have used
Equation 1.15 in the whole range of values of g, including the region of the
intersection of the adiabatic surfaces by assuming the principal value for
[E.(q)—Ey(q)] " at the intersection point. This leads to a finite but peaked value
of (1.15) at the surface intersection. A representative example of a similar situation
will be shown in Sections 1.6 and 7.6, where the nonadiabatic coupling (1.15) near the
conical intersection between states 2B, and A, of H,O  is shown.

1.1.3
The Crude Born—Oppenheimer Basis Set

In this and the following sections, we will discuss ways of selecting the basis function
¢, by separating the nuclear and electronic motions in a manner different from that
in the previous section. In the present approach, the electronic Hamiltonian is
assumed to be

Helee = Te(r) + U(r,q,) +AU(r. q). (1.17)

where q, is a reference configuration and AU = U(r.q)—U(r.q,) is taken as a
perturbation. In what follows, we will first briefly discuss the crude approximation
and then the improvement of the crude BO basis set by using the Herzberg-Teller
approximation. In addition to its practical utility, the Herzberg—Teller approximation
provides an instructive way of viewing the (improved) crude BO basis complementary
to that of the adiabatic basis derived in Section 1.1, permitting a reconciliation
between the apparently contradictory features of both the crude BO basis set and the
BO adiabatic basis set. The situation we have in mind occurs in the case of widely
separated electronic states, which when mixed with each other give rise to vibroni-
cally induced allowed electronic transitions [30, 31] (see, for example, the mixing of
odd parity states with the even parity states of transition metal complexes).
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In the crude adiabatic (CA) approximation [1, 32-40], the electronic wavefunctions
¢$*(r: q) defined ata specific nuclear configuration q, satisfy the following Schrédin-
ger equation:

[Te(r) + U(r.q)] 95 (r:q) = ES*@SM (12 qq). (1.18)

where ES* is the ath eigenvalue and q, implies all the nuclear coordinate positions of

the reference configuration. Since these wavefunctions form a complete set (which
span the Longuet-Higgins space), the eigenstate of the total Hamiltonian W,(r.q)
may be expanded (analogous to Equation 1.6) in terms of ¢S*(r:q,):

:Z(PEA("?Q())XIW((])~ (1.19)
b

As before, y,,(q) are initially treated as expansion coefficients, which must be
determined. Inserting Equation 1.19 in Equation 1.4 results in the usual infinite
set of coupled equations for the y,,(q):

[TN((]) + ECA + (‘PuL\(T q,) |AU| (Pu M q), ]7.41\'((])

+ 3 {9fA(r:qy) |AU| 95 (r:q9)) i (@) = 0.

b+a

(1.20)

The functions ¥, (q) are therefore determined by the set of coupled equations (1.20).
The potential functions (¢$*|AU|@{*) are usually represented as power series
expansions in the normal coordinates g, around qo, where g is usually chosen at
the minimum of the ground state.

Provided that

(9SMAUp™) =0 (1.21)
for a # b, Equation 1.19 is simply written as a product

WM (rq) = 05" (r:qe) e (q)- (1.22)

CA

av

where the coefficient %, is the eigenstate of the following equation:

[Tn(q) + ES* + (05N A UL ] 76 a) = EQMr (). (1.23)

The diagonal matrix elements (¢S*|AU|pS") are the effective potential energy

surface that governs nuclear motion. From Equations 1.10 and 1.23, it is evident
that the vibrational wavefunction y{* differs from the adiabatic wavefunction ¥°. As
long as the basis set (pd A(riqo) is complete in the electronic space, the CA basis is
perfectly adequate (independent of the choice of q;). The two matrix representa-

tions 1.8 and (1.20) are merely two different representations of the same operator.

1.1.4
Correction of the Crude Adiabatic Approximation

The electronic wavefunction in the crude adiabatic approximation is defined accord-
ing to Equation 1.18 at a specific nuclear configuration q, and therefore it does not
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depend on the nuclear coordinates {q,, }. To calculate corrections to this extreme case,
we apply the Rayleigh—Schrodinger (RS) perturbation calculation, taking AU as
perturbation operator. This leads to

Q. (r.q) = oM (1) + > e M )enlq). (1.24a)
bta

where

Q) = (95 (1)|AU|@SM (r)) (@5 ()| AUJQEA (1) ) (oEM (1) [A U9 (1))

Chalq) = EEA*E}(,:A -+ &;) (EEA_E}?A)(EEA—E‘CA) R

(1.25)

and

E[(g:b = Ea.i)(q()l-
The same procedure gives for the eigenvalues (in second order)

AU)”"

E“((]) = EL(IIA AU uu+ Z FLA’ E(A . (1.26)
where

(AU),, = (@S (1) AU g5 (1)) (1.27)

Expansion of AU in the vicinity of q, in terms of nuclear coordinates {q, } gives

1 (q)
o L (40 AT ()

i 9g,. 04,

After inserting (1.28) into (1.26), we have

ub ba
Ul
A ad
Ea(q) = E;* ZUuqu' §qr'Q\'{U|.\+2§ o E(A} (1.29)

v o7 Ea
with
"
Ut = { ¢S (r) ("U(r' ‘”) oS (1) (1.30)
gy q
and quadratic terms in qy:
A, |Pur, ‘
U = <<D§A(r) S St (P;EA(Y)>- (1.31)
0 0qy

In writing Equation 1.29, we have taken into account the linear terms from
Equation 1.28 in second order and quadratic terms in q in first order. Correspond-
ingly, the coefficients c,,(q) in (1.25) are expressed as (in second order)



