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Preface

For the past two years, I have been teaching a first-year graduate-level course in
linear algebra and analysis. My basic aim in this course has been to prepare
students for graduate-level work. This book consists mainly of the linear algebra
in my lectures. The topics presented here are those that I feel are most important
for students intending to do advanced work in such areas as algebra, analysis,
topology, and applied mathematics.

Normally, a student interested in mathematics, engineering, or the physical
sciences will take a one-term course in linear algebra, usually at the junior level.
In such a course, a student will first be exposed to the theory of matrices, vector
spaces, determinants, and linear transformations. Often, this is the first place
where a student is required to do a mathematical proof. It has been my
experience that students who have had only one such linear algebra course in
their undergraduate training are ill prepared to do advanced-level work. I have
written this book specifically for those students who will need more linear
algebra than is normally covered in a one-term junior-level course.

This text is aimed at seniors and beginning graduate students who have had
at least one course in linear algebra. The text has been designed for a one-
quarter or semester course at the senior or first-year graduate level. It is assumed
that the reader is familiar with such animals as functions, matrices, determi-
nants, and elementary set theory. The presentation of the material in this text is
deliberately formal, consisting mainly of theorems and proofs, very much in the
spirit of a graduate-level course.

The reader will note that many familiar ideas are discussed in Chapter I.
I urge the reader not to skip this chapter. The topics are familiar, but my
approach, as well as the notation I use, is more sophisticated than a junior-level

vii



viii PREFACE

treatment. The material discussed in Chapters II-V is usually only touched
upon (if at all) in a one-term course. I urge the reader to study these chapters
carefully.

Having written five chapters for this book, I obviously feel that the reader
should study all five parts of the text. However, time considerations often
demand that a student or instructor do less. A shorter but adequate course could
consist of Chapter I, Sections 1—6, Chapter II, Sections 1 and 2, and Chapters III
and V. If the reader is willing to accept a few facts about extending scalars, then
Chapters III, IV, and V can be read with no reference to Chapter II. Hence, a
still shorter course could consist of Chapter I, Sections 1—6 and Chapters III
and V.

It is my firm belief that any second course in linear algebra ought to contain
material on tensor products and their functorial properties. For this reason, I
urge the reader to follow the first version of a short course if time does not
permit a complete reading of the text. It is also my firm belief that the basic
linear algebra needed to understand normed linear vector spaces and real inner
product spaces should not be divorced from the intrinsic topology and analysis
involved. I have therefore presented the material in Chapter IV and the first half
of Chapter V in the same spirit as many analysis texts on the subject. My
original lecture notes on normed linear vector spaces and (real) inner product
spaces were based on Loomis and Sternberg’s classic text Advanced Calculus.
Although I have made many changes in my notes for this book, I would still like
to take this opportunity to acknowledge my debt to these authors and their fine
text for my current presentation of this material.

One final word about notation is in order here. All important definitions are
clearly displayed in the text with a number. Notation for specific ideas (e.g., N
for the set of natural numbers) is introduced in the main body of the text as
needed. Once a particular notation is introduced, it will be used (with only a few
exceptions) with the same meaning throughout the rest of the text. A glossary of
notation has been provided at the back of the book for the reader’s convenience.

WiLLiam C. BROWN

East Lansing, Michigan
September 1987
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Chapter |

Linear Algebra

1. DEFINITIONS AND EXAMPLES OF VECTOR SPACES

In this book, the symbol F will denote an arbitrary field. A field is defined as
follows:

Definition 1.1: A nonempty set F together with two functions (x, y) = x + y and
(x, y) = xy from F x F to F is called a field if the following nine axioms are
satisfied:

F1.
F2.
F3.
F4.

FS.
Fé.
F7.
F8.
FO.

x+y=y+xforall x,yeF.

x+(y+2z=x+y) +zforallx,y,zeF.

There exists a unique element O€ F such that x 4+ 0 = x for all xeF.
For every xeF, there exists a unique element —x€eF such that
X+ (—x)=0.

xy = yx for all x, yeF.

x(yz) = (xy)z for all x, y, zeF.

There exists a unique element 1 # 0 in F such that x1 = x for all xeF.
For every x # 0 in F, there exists a unique y € F such that xy = 1.

x(y + z) = xy + xz for all x, y, zeF.

Strictly speaking a field is an ordered triple (F,(x, y)—>x+Y, (x,y) = xy)
satisfying axioms F1-F9 above. The map from F x F—-F given by
(x,y) = x + y is called addition, and the map (x, y) = Xy is called multiplication.
When referring to some field (F, (x, y) = X + ¥, (X, y) — xy), references to addition
and multiplication are dropped from the notation, and the letter F is used to
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2 LINEAR ALGEBRA

denote both the set and the two maps satisfying axioms F1-F9. Although this
procedure is somewhat ambiguous, it causes no confusion in concrete situations.
In our first example below, we introduce some notation that we shall use
throughout the rest of this book.

Example 1.2: We shall let Q denote the set of rational numbers, R, the set of real
numbers, and C, the set of complex numbers. With the usual addition and
multiplication, @, R, and C are all fields with Q c R< C. [J

The fields in Example 1.1 are all infinite in the sense that the cardinal number
attached to the underlying set in question is infinite. Finite fields are very
important in linear algebra as well. Much of coding theory is done over finite
algebraic extensions of the field F, described in Example 1.3 below.

Example 1.3: Let Z denote the set of integers with the usual addition x + y and
multiplication xy inherited from Q. Let p be a positive prime in Z and set
F,=1{0,1,...,p — 1}. F, becomes a (finite) field if we define addition @ and
multiplication + modulo p. Thus, for elements x,ye F,, there exist unique
integers k, ze Z such that x + y = kp + z with zeF,. We define x @y to be z.
Similarly, x'y = w where xy =k'p + wand 0 < w < p.

The reader can easily check that (F,,, @, *) satisfies axioms F1-F9. Thus, F, is
a finite field of cardinality p. []

Except for some results in Section 7, the definitions and theorems in Chapter
I are completely independent of the field F. Hence, we shall assume that F is an
arbitrary field and study vector spaces over F.

Definition 1.4: A vector space V over F is a nonempty set together with two
functions, (a, ) > a + f from V x V to V (called addition) and (x, ) — xo from
F x V to V (called scalar multiplication), which satisfy the following axioms:

V1. a+ =B+ aforall a feV.

V2. a+(B+y)=(@+p)+yforalla B, yeV.

V3. There exists an element 0 eV such that 0 + o = « for all ae V.
V4. For every a€V, there exists a f€V such that « + f = 0.

V5. (xy)a = x(ya) for all x, yeF, and aeV.

V6. x(o + f) = xa + xp for all xeF, and «, feV.

V7. (x + y)a = xa + ya for all x, yeF, and aeV.

V8. la = a for all ae V.

As with fields, we should make the comment that a vector space over F is
really a triple (V, (a, f) > o + B, (x, @) = xa) consisting of a nonempty set V
together with two functions from V x Vto Vand F x V to V satisfying axioms
V1-V8. There may be many different ways to endow a given set V with the
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structure of a vector space over F. Nevertheless, we shall drop any reference to
addition and scalar multiplication when no confusion can arise and just use the
notation V to indicate a given vector space over F.

If V is a vector space over F, then the elements of V will be called vectors and
the elements of F scalars. We assume the reader is familiar with the elementary
arithmetic in V, and, thus, we shall use freely such expressions as —a, a — f, and
@, + -+ + a, when dealing with vectors in V. Let us review some well-known
examples of vector spaces.

Example 1.5: Let N = {1, 2, 3,...} denote the set of natural numbers. For each
neN, we have the vector space F* = {(x,,...,X,)| X;e F} consisting of all n-
tuples of elements from F. Vector addition and scalar multiplication are defined
componentwise by (Xq,...,X) + (Yis--s¥n) =X + Yoo 0 X + y,) and
X(Xy,...» Xg) = (XXq, ..., XX,). In particular, when n = 1, we see F itself is a
vector space over F. [

If A and B are two sets, let us denote the set of functions from A to B by BA.
Thus, BA = {f: A - B|f is a function}. In Example 1.5, F" can be viewed as the
set of functions from {1,2,...,n} to F. Thus, & = (X;,..., x,)€F" is identified
with the function g, F':-~*™ given by g,(i) = x; fori = 1,..., n. These remarks
suggest the following generalization of Example 1.5.

Example 1.6: Let V be a vector space over F and A an arbitrary set. Then the set
VA consisting of all functions from A to V becomes a vector space over F when
we define addition and scalar multiplication pointwise. Thus, if f,ge VA, f + g is
the function from A to V defined by (f + g)(a) = f(a) + g(a) for allae A. For xe F
and fe VA, xf is defined by (xf)(a) = x(f(a)). [

If A is a finite set of cardinality n in Example 1.6, then we shall shorten our
notation for the vector space VA and simply write V*. In particular, if V = F,
then V* = F" and we recover the example in 1.5.

Example 1.7: We shall denote the set of m x n matrices (a;;) with coefficients
a;;€ F by M, o(F). The usual addition of matrices (a;;) + (b;;) = (a;; + b;;) and
scalar multiplication x(a;;) = (xa;;) make M, .,(F) a vector space over F. O

Note that our choice of notation implies that F* and M, . ,(F) are the same
vector space. Although we now have two different notations for the same vector
space, this redundancy is useful and will cause no confusion in the sequel.

Example 1.8: We shall let F[X] denote the set of all polynomials in an
indeterminate X over F. Thus, a typical element in F[X] is a finite sum of the
form a X" +a,_, X" ! +--- +a, Here neNuU {0}, and a,,...,a,eF. The
usual notions of adding two polynomials and multiplying a polynomial by a



4 LINEAR ALGEBRA

constant, which the reader is familiar with from the elementary calculus, make
sense over any field F. These operations give F [X] the structure of a vector
space over F. [

Many interesting examples of vector spaces come from analysis. Here are
some typical examples.

Example 1.9: Let I be an interval (closed, open, or half open) in R. We shall let
C(I) denote the set of all continuous, real valued functions on L If k e N, we shall
let CX(I) denote those fe C(I) that are k-times differentiable on the interior of I.
Then C(I) 2 C'(I) 2 C*(I) = - - . These sets are all vector spaces over R when
endowed with the usual pointwise addition (f + g)(x) = f(x) + g(x), xel, and
scalar multiplication (yf)(x) = yf(x). O

Example 1.10: Let A = [a,, b;] x -+ x [a, b,] < R" be a closed rectangle. We
shall let 2(A) denote the set of all real valued functions on A that are Riemann
integrable. Clearly #(A) is a vector space over R when addition and scalar
multiplication are defined as in Example 1.9. []

We conclude our list of examples with a vector space, which we shall study
carefully in Chapter III.

Example 1.11: Consider the following system of linear differential equations:

fi = allfl R alnfn

frli = anlfl + e annfn

Here f,,..., f,eC!(I), where I is some open interval in R. f/ denotes the
derivative of f, and the a;; are scalars in R. Set A = (a, ) €M, . o(R). A is called the
matrix of the system. If B is any matrix, we shall let B! denote the transpose of B.
Setf=(fy,..., ). We may think of fas a function from {1, ..., n} to CY(I), that
is, fe C}(I)*. With this notation, our system of differential equations becomes
f" = Af. The set of solutions to our system is V = {feC'(D"|f" = Af}. Clearly, V
is a vector space over R if we define addition and scalar multiplication
componentwise as in Example 1.9. []

Now suppose V is a vector space over F. One rich source of vector spaces
associated with V is the set of subspaces of V. Recall the following definition:

Definition 1.12: A nonempty subset W of V is a subspace of V if W is a vector
space under the same vector addition and scalar multiplication as for V.

Thus, a subset W of Vis a subspace if W is closed under the operations of V.
For example, C([a, b]), CX([a, b]), R[X], and #([a, b]) are all subspaces of RI**],
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If we have a collection & = {W;|ie A} of subspaces of V, then there are some
obvious ways of forming new subspaces from .. We gather these constructions
together in the following example:

Example 1.13: Let & = {W,|ieA} be an indexed collection of subspaces of V.
In what follows, the indexing set A of .% can be finite or infinite. Certainly the
intersection, ﬂieA W;, of the subspaces in % is a subspace of V. The set of all
finite sums of vectors from | J;., W; is also a subspace of V. We shall denote this
subspace by Y ;.4 W;. Thus, Y ;a W; = {3 s ;| o;€ W, for all ie A}. Here and
throughout the rest of this book, if A is infinite, then the notation ) ;_, o; means
that all «; are zero except possibly for finitely many ie A. If A is finite, then
without any loss of generality, we can assume A = {1,...,n} for some ne N. (If
A = ¢, then Yica W, = (0).) We shall then write Y, ,, Wy =W, + - + W,

If & has the property that for every i, je A there exists a ke A such that
W, u W, = W, then clearly (Jiea W, is a subspace of V. [

In general, the union of two subspaces of V is not a subspace of V. In fact, if
W, and W, are subspaces of V, then W; U W, is a subspace if and only if
W, € W, or W, < W,. This fact is easy to prove and is left as an exercise. In our
first theorem, we discuss one more important fact about unions.

Theorem 1.14: Let V be a vector space over an infinite field F. Then V cannot be
the union of a finite number of proper subspaces.

Proof: Suppose W,,..., W, are proper subspaces of V such that
V =W, u---uW,. We shall show that this equation is impossible. We remind
the reader that a subspace W of V is proper if W # V. Thus, V — W # ¢ for a
proper subspace W of V.

We may assume without loss of generality that W, ¢ W, u--- U W,. Let
aeW, — (Ji_, W,. Let BeV — W,. Since F is infinite, and neither « nor f is
zero, A = {o + xf|x€F} is an infinite subset of V. Since there are only finitely
many subspaces W;, there exists a je {1,..., n} such that A n W; is infinite.

Suppose je{2,...,n}. Then there exist two nonzero scalars x, xX'eF
such that x #x, and o+ xB, a+x'BeW;. Since W; is a subspace,
(X" — x)a = x'(@ + xp) — x(« + x'B)e W;. Since x' — x # 0, we conclude xe W;.
But this is contrary to our choice of x¢ W, U ---UW,. Thus, j = 1.

Now if j = 1, then again there exist two nonzero scalars x, x' € F such that
x #x, and o + xf, a + x’BeW,. Then (x — x")f = (¢ + xf) — (x + xX'B) e W,.
Since x — x’ # 0, fe W,. This is impossible since f was chosenin V — W,. We
conclude that V cannot be equal to the union of W,, ..., W,. This completes the
proof of Theorem 1.14. []

If F is finite, then Theorem 1.14 is false in general. For example, let V = (F,)?.
Then V=W, uW, uW;, where W, = {(0,0), (1, 1)}, W, = {(0, 0), (0, 1)}, and
W3 = {(09 0), (1’ O)}
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Any subset S of a vector space V determines a subspace LS) = n{W|W a
subspace of V, W = S}. We shall call L(S) the linear span of S. Clearly, L(S) is the
smallest subspace of V containing S. Thus, in Example 1.13, for instance,
L(UieA W) = ZieA Wi.

Let 2(V) denote the set of all subsets of V. If #(V) denotes the set of all
subspaces of V, then &(V)< 2(V), and we have a natural function
L: 2(V) - #(V), which sends a subset Se 2(V) to its linear span L(S)e #(V).
Clearly, L is a surjective map whose restriction to (V) is the identity. We
conclude this section with a list of the more important properties of the function
L(°).

Theorem 1.15: The function L: 2(V) —» #(V) satisfies the following poperties:

(@) For Se2(V), L(S) is the subspace of V consisting of all finite linear
combinations of vectors from S. Thus,

L(S) = {Xn: Xio; | x;€ F, ;€S, n > 0}

(b) If S; =8,, then L(S,) < L(S,).

() If e L(S), then there exists a finite subset S’ < S such that e L(S').

(d) S = L(S) for all Se 2(V).

(e) For every Se 2(V), L(L(S)) = L(S).

(f) If BeL(Su {a}) and B¢L(S), then aeL(SuL {B}). Here a, feV and
Se2(V).

Proof: Properties (a)—(e) follow directly from the definition of the linear span.
We prove (f). If fe L(S U {a}) — L(S), then B is a finite linear combination of
vectors from Su {«}. Furthermore, « must occur with a nonzero coefficient
in any such linear combination. Otherwise, feL(S). Thus, there exist

vectors ay,...,®,€S and nonzero scalars x,,...,X,, X,,;€F such that
B =%+ + X0, + Xy 4,0 Since X,.; #0, we can write o as a linear
combination of f and «,...,a, Namely, a=x}8—x;}x0 —

— X4 1Xa%,. Thus, ae LS U {B). O

EXERCISES FOR SECTION 1

(1) Complete the details in Example 1.3 and argue (Fp, @, °) is a field.

(2) Let R(X) = {f(x)/g(x)|f, ge R[X] and g # 0} denote the set of rational
functions on R. Show that R(X) is a field under the usual definition of
addition f/g + h/k = (kf + gh)/gk and multiplication (f/g)(h/k) = th/gk.
R(X) is called the field of rational functions over R. Does F(X) make sense
for any field F?
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3) Set F = {a + b,/ —5|a, be Q}. Show that F is a subfield of C, that is,
F is a field under complex addition and multiplication. Show that

{a + b/ —5|a, b integers} is not a subfield of C.

(4) Let I be an open interval in R. Let ae L. Let V, = {fe R'|f has a derivative
at a}. Show that V, is a subspace of R

(5) The vector space RN is just the set of all sequences {a;} = (a;, a5, a3, . - - )
with a,e R. What are vector addition and scalar multiplication here?

(6) Show that the following sets are subspaces of RN:
(@ W, = {{ai}ERN|limi—~w a; = 0}.
() W, = {{a;}eRY|{a;} is a bounded sequence}.
(©) W5 ={{a;}eRV|Y¥2, a7 < o}
(7) Let (a,,...,a,)eF" —(0). Show that {(xl,...,xn)eF“|Z?=1 ax;=0}isa
proper subspace of F™.

(8) Identify all subspaces of R*. Find two subspaces W, and W, of R? such
that W, U W, is not a subspace.

(9) Let V be a vector space over F. Suppose W, and W, are subspaces of V.
Show that W, U W, is a subspace of V if and only if W, = W, or
(10) Consider the following subsets of R[X]:
@ W, = {feR[X]|f0) = O}.
(b) W, = {fe R[X]| 2f(0) = f(1)}-
() W, = {fe R[X]|the degree of f < n}.
@ W, = {feR[X]|f(t) = f(1 — 1) for all teR}.
In which of these cases is W; a subspace of R[X]?

(11) Let K, L, and M be subspaces of a vector space V. Suppose K 2 L. Prove
Dedekind’s modular law: K n (L + M) = L + (K n M).

(12) Let V = R>. Show that &, = (1, 0, 0) is not in the linear span of a, B, and y
where a = (1,1, 1), = (0,1, —1), and y = (1, 0, 2).

(13) If S, and S, are subsets of a vector space V, show that
L(S, uS,) = L(S;) + L(S,).

(14) Let S be any subset of R[X] = R®. Show that e*¢ L(S).

(15) Let o; = (a;," a;,)e F? for i = 1, 2. Show that F? = L({«y, ,}) if and only if
the determinant of the 2 x 2 matrix M = (a;;) is nonzero. Generalize this
result to F".

(16) Generalize Example 1.8 to n + 1 variables X, . .., X,. The resulting vector
space over F is called the ring of polynomials in n + 1 variables (over F). It
is denoted F[X,, ..., X,]. Show that this vector space is spanned by all
monomials X, ..., X™ as (m,, ..., my)e(NuU {0})" 1.
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(17) A polynomial fe F[X,,..., X,] is said to be homogeneous of degree d if f is a
finite linear combination of monomials X0, ..., Xp» of degree d (ie.,
mo + --* + m, = d). Show that the set of homogeneous polynomials of
degree d is a subspace of F[X,, ..., X,]. Show that any polynomial f can be
written uniquely as a finite sum of homogeneous polynomials.

(18) Let V = {AeM,, (F)|A = A'}. Show that V is a subspace of M, , (F). V
is the subspace of symmetric matrices of M, . .(F).

(19) Let W = {AeM,, (F)|A' = —A}. Show that W is a subspace of M, . .(F).
W is the subspace of all skew-symmetric matrices in M, . .(F).

(20) Let W be a subspace of V, and let @ pfeV.SetA =0+ Wand B =g+ W.
Show that A=Bor AnB = ¢J.

2. BASES AND DIMENSION

Before proceeding with the main results of this section, let us recall a few facts
from set theory. If A is any set, we shall denote the cardinality of A by |A|. Thus,
A is a finite set if and only if |A| < oo. If A is not finite, we shall write |A| = oo.
The only fact from cardinal arithmetic that we shall need in this section is the
following:

2.1: Let A and B be sets, and suppose |A| = co. If for each xeA, we have some
finite set A, = B, then [A| > || ), A,l-

A proof of 2.1 can be found in any standard text in set theory (e.g., [1]), and,
consequently, we omit it.

A relation R on a set A is any subset of the crossed product A x A. Suppose R
isarelation onaset A. If x, ye A and (x, y) € R, then we shall say x relates to y and
write X ~ y. Thus, x ~ y<>(x, y)e R. We shall use the notation (A, ~)toindicate
the composite notion of a set A and a relation R < A x A. This notation is a bit
ambiguous since the symbol ~ has no reference to R in it. However, the use of
~ will always be clear from the context. In fact, the only relation R we shall
systematically exploit in this section is the inclusion relation < among subsets of
2(V) [V some vector space over a field F il

A set A is said to be partially ordered if A has a relation R < A x A such that
(1) x ~ x for all xeA, (2) if x ~y, and y ~ x, then x = ¥, and (3) if x ~ y, and
y ~ z, then x ~ z. A typical example of a partially ordered set is 2(V) together
with the relation A ~ B if and only if A < B. If (A, ~)is a partially ordered set,
and A; < A, then we say A, is totally ordered if for any two elements x, ye A,
we have at least one of the relations x ~ yory~x If (A, ~) is a partially
ordered set,and A; < A, then an element x € A is called an upper bound for A, if
y ~ x for all ye A,. Finally, an element x € (A, ~) is a maximal element of A if
X ~y implies x = y.



