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Preface

This monograph is devoted to the study of general problems on the global-in-time
solvability and blow-up for a finite time of initial-value and initial-boundary-value
problems for nonlinear equations of Sobolev type. Our studies together with an out-
standing Russian mathematician S. A. Gabov, who prematurely died in 1989, stimu-
lated further work in this direction.

Our study of the blow-up of solutions to pseudoparabolic nonlinear equations was
considerably stimulated by the classical work of A. A. Samarskii, V. A. Galaktionov,
S. P. Kurdyumov, and A. P. Mikhaylov Blow-Up in Quasilinear Parabolic Equations,
which influenced the choice of many themes of our monograph.

We express a deep appreciation to V. P. Maslov, S. I. Pokhozhaev and N. N. Kalitkin
for useful discussion of certain results presented in the monograph. We thank all par-
ticipants of the scientific seminar “Nonlinear differential equations” and its supervisor
Prof. I. A. Shishmaryov for their valuable comments on various sections of the book.

The research being the subject of this monograph were supported by the Russian
Foundation for Basic Research (projects No. 02-10-00253, 05-01-00122, 05-01-00144,
and 08-01-00376-a) and the Program of the President of the Russian Federation for
supporting scientific schools and young candidates and doctors of science (projects
No. NH-1918.2003.1, MK-1857.2005.1, MK-1513.2005.9, MD-1006.2007.1 MD-
99.2009.1).

Moscow, January 2011 Alexander B. Al’shin,
Maxim O. Korpusov,
Alexey G. Sveshnikov
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Chapter 0
Introduction

0.1 List of equations

First, we give a definition of Sobolev-type equations. Under a Sobolev-type equation,
we mean an equation which is not resolved with respect to the partial derivative in
time of the highest order. In our monograph, we use another term, pseudoparabolic
equations, introduced by R. E. Showalter and T. W. Ting in [378]. Pseudoparabolic
equations form a subclass of Sobolev-type equations with first-order derivatives in
time. As in [378], we study only nonlinear, odd-order, pseudoparabolic equations,
but, for completeness, we review results concerning nonlinear even-order equations.

0.1.1 One-dimensional pseudoparabolic equations
The Camassa—Holm equation
Up — Uxxr + 3UUx = 2UxUxx + Ul xxx

describes the unidirectional propagation of shallow-water waves over a flat bottom
(see [67-72,200-202]). It is completely integrable (see [208]) and admits, in addition
to smooth waves, a variety of travelling-wave solutions with singularities: peakons,
cuspons, stumpons, and composite waves (see [258, 269, 270, 292]). This equation
models wave breaking (see [95-101]).

The Degasperis—Procesi equation
Up —Uxxr +dUUy = SUxUxy + Ul xxx

models nonlinear shallow-water dynamics. It is completely integrable (see [208]) and
has a variety of travelling-wave solutions including solitary-wave solutions, peakon
solutions, and shock waves solutions (see [89,90, 137,259,282,291,292)).

The Fornberg—Whitham equation
Up —Uxxr +Ux + UUx = Ul xxx + SUxUxx

appeared in the study of the qualitative behavior of wave breaking (see [428]). It
admits a wave of greatest height, as a peaked limiting form of the travelling-wave
solution
x— =t
l

(see [157]), where A is an arbitrary constant. It is not completely integrable (see
[208]).

1
u(x,t) = Aexp {—;
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The Benjamin—Bona—Mahony (BBM) equation
U —Uxxr +Ux +UUx =0,

which is widely presented in the scientific literature; we note only the most significant
works in which initial-value, initial-boundary-value, and periodic initial-boundary
value problems were investigated: [2,5,24,37,39,42-53,78, 193,297].

The modified Benjamin—Bona—Mahony (MBBM ) equation
Up — Usxr + Uy + 3uPUx =0

has also been investigated by many authors (see, e.g., [38,66,273,310,343,344,438]).

The hyperelastic-rod wave equation
Ur —Uxxt + Uy = Y(2uxtxy + Ullxxx)

was considered in [208].

The generalized hyperelastic-rod wave equation
2 3y _
Up —Uxyr + Ox (U + @uU” 4+ yU’) = VUxUxy + Ulxxx

is a generalization of the previous equation.

0.1.2 One-dimensional wave dispersive equations
The Benjamin—Bona—Mahony—Burgers (BBMB) equation
Up —Uxxt +Ux +UUx — VUxy =0

was considered, e.g., in [1,37,48-53,78, 140, 178, 188,296,402,441].

The generalized porous-media equation

u, =ax(u(IUx+uﬂuxt). a.ﬂ >0.

which was studied, e.g., in [106].

The Rosenau—Burgers equation
Uxxxxt +Ur — QUxx + uPuy = 0.

The breaking result for this equation was obtained in [315,316,348-352]. Moreover,
in [197,296,315,316], the first terms of asymptotic expansions of solutions for large
time were found. In addition, we note the paper [83, 86], where Galerkin approxima-
tions were considered.
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0.1.3 Singular one-dimensional pseudoparabolic equations

In these equations, elliptic operators under the highest time derivative are not resolv-
able.

The Coleman—Duffin—Mizel equation
Ur + Uxxr —Uxx =0

was considered in [91].
The Hoff equation
Ur + Uxxr = au + fu’

was studied, e.g., in [199,395-398]. The semigroup approach to the general theory of
Sobolev-type singular equations was developed by G. A. Sviridyuk and V. E. Fyodo-
rov. In an abstract form, degenerate pseudoparabolic equations were considered, e.g.,
in [148,431-433].

The Korpusov—Pletner—Sveshnikov equation
“[+uxxt+auxx+ﬂ(u2)xx=(). a>0.ﬂ>0-

describes nonstationary processes in crystalline semiconductors.

The one-dimensional Oskolkov equation

U + Uxxr + UUx + VU = 0.
The one-dimensional Boussinesq equation

U + Uxxr + v('“lp—zu)xx =0

was considered in [130, 395, 398].

0.1.4 Multidimensional pseudoparabolic equations

The Barenblatt—Zheltov—Kochina equation
0
= (Au+cu)+ Au=0, c¢eRN{0},

describes nonstationary filtering processes in fissured-porous media. This equation
can be rewritten in a more general form

d
EA(M) + B(u) =0,

where A(u) and B(u) are nonlinear elliptic operators. In the classical works [365—
371,374, 378] R. E. Showalter and T. W. Ting considered linear equations of this
form.
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The Showalter equation
0
E(Au + div(|Vu|?~2Vu) — u) + aAu + a div(|Vu|?~2Vu) = 0

and initial-value problems for it were considered in [368,369] and some general re-
sults on the unique solvability for abstract pseudoparabolic equations were obtained.

The Showalter inclusion

iA(z)-}-B(u) > f.
o 1 f

where A(u) and B(u) are maximal monotone elliptic operators, were studied in [113-
120,365-371,374,388-392]. Moreover, we mention the following works devoted to
the study of initial-value and initial-boundary-value problems for multidimensional
dissipative pseudoparabolic equations: [12, 31-36, 39-42, 57-61, 64, 65, 77-79, 93,
94,103-106,113-120, 143-149,179,195-197,217,251-255,306-309,315,316,364].
We also note the monograph of H. Gajewski, K. Groger, and K. Zacharias [168],
in which various aspects of the local solvability of pseudoparabolic equations are
considered. The central part of this monograph is devoted to the study of operator and
operator-differential equations. For pseudoparabolic operator-differential equations,
the aspects of C- and [L2-solvability are analyzed. The basis of finite-dimensional
approximate methods, especially the Galerkin method, is considered.

We note that the method of construction of asymptotical expansions for large time
for a wide class of nonlinear evolutionary equations developed in works of N. Hayashi,
I. A. Shishmaryov, P. I. Naumkin, and E. I. Kaikina (see [195-197,306-309]) can be
applied to the study of the asymptotical behavior for large time for pseudoparabolic
equations. Specifically, in [364] the asymptotic behavior of solutions of the Cauchy
problem for the following dissipative pseudoparabolic equation was obtained.

The semiconductor equation

d
E(All—u)+Au+au3=O. a € R.

was obtained in [236]; it describes nonstationary processes in crystalline semiconduc-
tors.

The generalized Boussinesq nonlinear equation
Uy — AY(u) — Auy + q(u) = 0.

Based on the comparison principle, A. I. Kozhanov [243] proved the solvability of
the first boundary-value problem and the occurrence of the blow-up. The blow-up of
positive solutions was proved and existence/nonexistence theorems were obtained.

The multidimensional Benjamin—-Bona—Mahony—Burgers equation

0
5(Au—u)+(A,V)(u+u2)+Au =0
was considered in [217,429,441].
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The linear Rossby wave equation

a2 92

d ou
._A V) — — = =— SN
2U + .B(y)ax 0, A; X2 + ay2

dt

is a linear approximation in the S-plane of the two-dimensional Rossby wave equation
(see [164,165]), where the axes Ox and Oy are directed to the east and to the north,
respectively, and 8 = f(y) is the Coriolis parameter.

The Kadomtsev—Petviashvilli equation

ad ou ou
E(Azu —u) + a + ua—x + J(u, Azu) =0, J(ab) = axby —Clybx.

is a nonlinear generalization of the two-dimensional equation of Rossby waves (see,
e.g., [400]).

The three-dimensional Camassa—Holm equation

%(Au—u)+vA(Au—u)—i—ux(Vx(Au—u)):Vp,

is the viscous version of the three-dimensional Camassa—Holm equations; it was con-

sidered in [202].

0.1.5 New nonlinear pseudoparabolic equations with sources

Now we list some equations obtained in our works [233-240].

The generalized Benjamin—Bona—Mahony—Burgers equation

d d 0
—(Au—u — |ul?u) + a +u_—u + Au + |[u|Pu =0,
dt dxy dxy

where x = (x1.x2,x3) € Q CR3, g1.¢92 > 0,

32 a2 92

Bxlz dx% 8x§

The nonlocal pseudoparabolic equation
0 q
— (Au —u) + Au [/ ]Vu|2dxj| =0, ¢g>-—l.
ot Q

The generalized Rosenau—Burgers equation

d
&(—Azu + Au + div(|Vu|?' 72Vu)) + Au — div(|Vu|P2"2Vu) = 0,
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where
AzEAA, pl.p222.

The spin-wave equation
d 2 . -2 : 2
5(—4& u + Au + div(|Vu|?~*Vu)) + Au — div(|Vu|*Vu)

i d du 8u)+ 8(8u 8u)+a H(Bu Bu) 0
ap— | —— ——— ——] =0,
! dxy \ 0xp 0x3 *2 dxp \ dx3 dxy ¢ dx3 \ dxq dxo

where |o1] + |oa| + 3| > 0,01 + a2 + a3 =0, p > 2.

0.1.6 Model nonlinear equations of even order

For completeness, we list some model, nonlinear, even-order equations although we
will not study them in what follows.

One-dimensional nonlinear equations

The Longern wave equation

2

prEl

which describes electric signals in telegraph lines [281]. Moreover, in active nonlinear
media, the following equations hold.

(uxx—ozu+,3u2)+uxx=0. a>0, >0,

The Rabinowitz wave equations with nonlinear damping

2 2
m (uxx —u) + m (
02 d 2
m(uxx—u)qLé?(u—u ) + uxx =0,
which describe electric signals in telegraph lines on the basis of the tunnel diode
(see [340,341]). Note that in our book [230], sufficient conditions of the blow-up for
the corresponding initial-boundary-value problems were obtained.

Ux — (ux)z) +uxx =0,

The nonlinear telegraph equation with nonlinear damping
Pu  0%u 0*u 3 (ud
52 ez = Yazae TP \ 3
ot ax ax20t ax?%0t \ 3
which was considered in [62,223].

The Pochhammer—Chree equation

—u). a>0, B>0,

3 5
Uty — Uxxrr — (@1u +azu” +asu’)xx =0

was considered in [442-444].



