A 2 victor Shoup

7% | AComputational

L= 47 | Introduction
Number Theory
Algebra

CAMBRIDGE

O/ S¢

ey
i - [

A COMPUTATIONAL INTRODUCTION
TO NUMBER THEORY AND ALGEBRA

VICTOR SHOUP

AR

E200602414

%% CAMBRIDGE
E\] E’}:’ UNIVERSITY PRESS

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521851541

© V. Shoup 2005
This book is in copyright. All rights reserved.
First published 2005
Printed in the United Kingdom at the University Press, Cambridge
A catalog record for this book is available from the British Library

ISBN-13 978-0-521-85154-1 hardback
ISBN-10 0-521-85154-8 hardback

ISBN-13 978-0-521-61725-3 paperback
ISBN-10 0-521-61725-1 paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for
external or third-party internet websites referred to in this book, and does not guarantee that
any content on such websites is, or will remain, accurate or appropriate.

A COMPUTATIONAL INTRODUCTION
TO NUMBER THEORY AND ALGEBRA

Preface

Number theory and algebra play an increasingly significant role in comput-
ing and communications, as evidenced by the striking applications of these
subjects to such fields as cryptography and coding theory. My goal in writ-
ing this book was to provide an introduction to number theory and algebra,
with an emphasis on algorithms and applications, that would be accessible
to a broad audience. In particular, I wanted to write a book that would be
accessible to typical students in computer science or mathematics who have
a some amount of general mathematical experience, but without presuming
too much specific mathematical knowledge.

Prerequisites. The mathematical prerequisites are minimal: no particular
mathematical concepts beyond what is taught in a typical undergraduate
calculus sequence are assumed.

The computer science prerequisites are also quite minimal: it is assumed
that the reader is proficient in programming, and has had some exposure
to the analysis of algorithms, essentially at the level of an undergraduate
course on algorithms and data structures.

Even though it is mathematically quite self contained, the text does pre-
suppose that the reader is comfortable with mathematical formalism and
has some experience in reading and writing mathematical proofs. Read-
ers may have gained such experience in computer science courses such as
algorithms, automata or complexity theory, or some type of “discrete math-
ematics for computer science students” course. They also may have gained
such experience in undergraduate mathematics courses, such as abstract or
linear algebra—these courses overlap with some of the material presented
here, but even if the reader already has had some exposure to this material,
it nevertheless may be convenient to have all of the relevant material easily
accessible in one place, and moreover, the emphasis and perspective here

Preface xi

will no doubt be different than in a typical mathematics course on these
subjects.

Structure of the text. All of the mathematics required beyond basic cal-
culus is developed “from scratch.” Moreover, the book generally alternates
between “theory” and “applications”: one or two chapters on a particular
set of purely mathematical concepts are followed by one or two chapters on
algorithms and applications—the mathematics provides the theoretical un-
derpinnings for the applications, while the applications both motivate and
illustrate the mathematics. Of course, this dichotomy between theory and
applications is not perfectly maintained: the chapters that focus mainly
on applications include the development of some of the mathematics that
is specific to a particular application, and very occasionally, some of the
chapters that focus mainly on mathematics include a discussion of related
algorithmic ideas as well.

In developing the mathematics needed to discuss certain applications, I
tried to strike a reasonable balance between, on the one hand, presenting
the absolute minimum required to understand and rigorously analyze the
applications, and on the other hand, presenting a full-blown development
of the relevant mathematics. In striking this balance, I wanted to be fairly
economical and concise, while at the same time, I wanted to develop enough
of the theory so as to present a fairly well-rounded account, giving the reader
more of a feeling for the mathematical “big picture.”

The mathematical material covered includes the basics of number theory
(including unique factorization, congruences, the distribution of primes, and
quadratic reciprocity) and abstract algebra (including groups, rings, fields,
and vector spaces). It also includes an introduction to discrete probability
theory—this material is needed to properly treat the topics of probabilistic
algorithms and cryptographic applications. The treatment of all these topics
is more or less standard, except that the text only deals with commutative
structures (i.e., abelian groups and commutative rings with unity)—this is
all that is really needed for the purposes of this text, and the theory of these
structures is much simpler and more transparent than that of more general,
non-commutative structures.

The choice of topics covered in this book was motivated primarily by
their applicability to computing and communications, especially to the spe-
cific areas of cryptography and coding theory. For example, the book may
be useful for reference or self-study by readers who want to learn about
cryptography. The book could also be used as a textbook in a graduate

xii Preface

or upper-division undergraduate course on (computational) number theory
and algebra, perhaps geared towards computer science students.

Since this is an introductory textbook, and not an encyclopedic reference
for specialists, some topics simply could not be covered. One such topic
whose exclusion will undoubtedly be lamented by some is the theory of
lattices, along with algorithms for and applications of lattice basis reduction.
Another such topic is that of fast algorithms for integer and polynomial
arithmetic—although some of the basic ideas of this topic are developed in
the exercises, the main body of the text deals only with classical, quadratic-
time algorithms for integer and polynomial arithmetic. As an introductory
text, some topics just had to go; moreover, there are more advanced texts
that cover these topics perfectly well, and these texts should be readily
accessible to students who have mastered the material in this book.

Note that while continued fractions are not discussed, the closely related
problem of “rational reconstruction” is covered, along with a number of in-
teresting applications (which could also be solved using continued fractions).

Using the text. Here are a few tips on using the text.

e There are a few sections that are marked with a “(x),” indicating

that the material covered in that section is a bit technical, and is not
needed elsewhere.

e There are many examples in the text. These form an integral part of
the text, and should not be skipped.

e There are a number of exercises in the text that serve to reinforce,
as well as to develop important applications and generalizations of,
the material presented in the text. In solving exercises, the reader is
free to use any previously stated results in the text, including those
in previous exercises. However, except where otherwise noted, any
result in a section marked with a “(x),” or in §5.5, need not and
should not be used outside the section in which it appears.

e There is a very brief “Preliminaries” chapter, which fixes a bit of
notation and recalls a few standard facts. This should be skimmed
over by the reader.

e There is an appendix that contains a few useful facts; where such a
fact is used in the text, there is a reference such as “see §An,” which
refers to the item labeled “An” in the appendix.

Feedback. I welcome comments on the book (suggestions for improvement,
error reports, etc.) from readers. Please send your comments to

victor@shoup.net.

Preface xiii

There is also web site where further material and information relating to
the book (including a list of errata and the latest electronic version of the
book) may be found:

www.shoup.net/ntb.

Acknowledgments. 1 would like to thank a number of people who vol-
unteered their time and energy in reviewing one or more chapters: Sid-
dhartha Annapureddy, John Black, Carl Bosley, Joshua Brody, Jan Ca-
menisch, Ronald Cramer, Alex Dent, Nelly Fazio, Mark Giesbrecht, Stuart
Haber, Alfred Menezes, Antonio Nicolosi, Roberto Oliveira, and Louis Sal-
vail. Thanks to their efforts, the “bug count” has been significantly reduced,
and the readability of the text much improved. I am also grateful to the
National Science Foundation for their support provided under grant CCR-
0310297. Thanks to David Tranah and his colleagues at Cambridge Univer-
sity Press for their progressive attitudes regarding intellectual property and
open access.

New York, January 2005 Victor Shoup

Preliminaries

We establish here a few notational conventions used throughout the text.

Arithmetic with oo

We shall sometimes use the symbols “00” and “—o0” in simple arithmetic

expressions involving real numbers. The interpretation given to such ex-
pressions is the usual, natural one; for example, for all real numbers x, we
have —oc0o < & < 00, T4+ 00 = 00, T — 00 = —00, 00 + 00 = 00, and
(—00) + (—o0) = —oo. Some such expressions have no sensible interpreta-
tion (e.g., 00 — 00).

Logarithms and exponentials

We denote by log x the natural logarithm of x. The logarithm of z to the
base b is denoted logy, x.

We denote by e” the usual exponential function, where e ~ 2.71828 is the
base of the natural logarithm. We may also write exp[z] instead of e®.

Sets and relations

We use the symbol @) to denote the empty set. For two sets A, B, we use the
notation A C B to mean that A is a subset of B (with A possibly equal to
B), and the notation A C B to mean that A is a proper subset of B (i.e.,
A C B but A # B); further, AU B denotes the union of A and B, AN B
the intersection of A and B, and A\ B the set of all elements of A that are
not in B.

For sets S1,...,Sn, we denote by S7 X --- x S, the Cartesian product

xiv

Preliminaries XV

of S1,...,5,, that is, the set of all n-tuples (ay,...,ay), where a; € S; for
1=1,...,n.

We use the notation S*™ to denote the Cartesian product of n copies of
a set S, and for z € S, we denote by z*" the element of S*™ consisting of
n copies of z. (We shall reserve the notation S™ to denote the set of all nth
powers of S, assuming a multiplication operation on S is defined.)

Two sets A and B are disjoint if AN B = (). A collection {C;} of sets is
called pairwise disjoint if C; N C; = 0 for all 4,j with i # j.

A partition of a set S is a pairwise disjoint collection of non-empty
subsets of S whose union is S. In other words, each element of S appears
in exactly one subset.

A binary relation on a set S is a subset R of S x S. Usually, one writes
a ~ b to mean that (a,b) € R, where ~ is some appropriate symbol, and
rather than refer to the relation as R, one refers to it as ~.

A binary relation ~ on a set S is called an equivalence relation if for
all z,y,z € S, we have

e 1 ~ 1z (reflexive property),
e 1 ~ y implies y ~ x (symmetric property), and
e x ~y and y ~ z implies x ~ z (transitive property).
If ~ is an equivalence relation on S, then for x € S one defines the set
[z] ;== {y € S : 2z ~ y}. Such a set [z] is an equivalence class. It follows
from the definition of an equivalence relation that for all z,y € S, we have
e x € [z], and
e cither [z]N[y] =0 or [z] = [y].
In particular, the collection of all distinct equivalence classes partitions the

set S. For any = € S, the set [z] is called the the equivalence class
containing z, and z is called a representative of [z].

Functions

For any function f from a set A into a set B, if A’ C A, then f(A4') :=
{f(a) € B:a € A'} is the image of A" under f, and f(A) is simply referred
to as the image of f; if B’ C B, then f~1(B’) := {a € A: f(a) € B’} is the
pre-image of B’ under f.

A function f : A — B is called one-to-one or injective if f(a) = f(b)
implies a = b. The function f is called onto or surjective if f(A) = B.
The function f is called bijective if it is both injective and surjective; in
this case, f is called a bijection. If f is bijective, then we may define the

xvi Preliminaries

inverse function f~!: B — A, where for b € B, f~1(b) is defined to be
the unique a € A such that f(a) =b.

If f: A— Bandg: B — C are functions, we denote by g o f their
composition, that is, the function that sends a € A to g(f(a)) € C. Function
composition is associative; that is, for functions f : A — B, g : B — C,
and h : C — D, we have (hog)o f = ho(go f). Thus, we can simply
write h o g o f without any ambiguity. More generally, if we have functions
fi o Aj — Ajyq for ¢ = 1,...,n, where n > 2, then we may write their
composition as fp oo f; without any ambiguity. As a special case of this,
if A; = Aand f; = f for i = 1,...,n, then we may write f, o---o f] as
f™. Tt is understood that f' = f, and that f° is the identity function on A.
If f is a bijection, then so is f™ for any non-negative integer n, the inverse
function of f™ being (f~!)", which one may simply write as f~".

Binary operations

A binary operation x on a set S is a function from S x S to S, where the
value of the function at (a,b) € S x S is denoted a * b.

A binary operation x on S is called associative if for all a,b,c € S, we
have (axb)xc = ax(bxc). In this case, we can simply write axbxc without
any ambiguity. More generally, for ay,...,a, € S, where n > 2, we can
write aj * - - - x a, without any ambiguity.

A binary operation x on S is called commutative if for all a,b € 5,
we have a xb = b a. If the binary operation x is both associative and
commutative, then not only is the expression a; x - - - * a,, unambiguous, but
its value remains unchanged even if we re-order the a;.

Contents

Preface page X
Preliminaries xiv
1 Basic properties of the integers 1

1.1 Divisibility and primality
1.2 Ideals and greatest common divisors

1.3 Some consequences of unique factorization 8
2 Congruences 13
2.1 Definitions and basic properties 13
2.2 Solving linear congruences 15
2.3 Residue classes 20
2.4 Euler’s phi function 24
2.5 Fermat’s little theorem 25
2.6 Arithmetic functions and Mobius inversion 28
3 Computing with large integers 33
3.1 Asymptotic notation 33
3.2 Machine models and complexity theory 36
3.3 Basic integer arithmetic 39
3.4 Computing in Z, 48
3.5 Faster integer arithmetic (x) 51
3.6 Notes 52
4 Euclid’s algorithm 55
4.1 The basic Euclidean algorithm 55
4.2 The extended Euclidean algorithm 58
4.3 Computing modular inverses and Chinese remaindering 62
4.4 Speeding up algorithms via modular computation 63
4.5 Rational reconstruction and applications 66
4.6 Notes 73

vi

Contents

The distribution of primes

5.1
5.2
5.3
5.4
5.5
5.6

Chebyshev’s theorem on the density of primes
Bertrand’s postulate

Mertens’ theorem

The sieve of Eratosthenes

The prime number theorem ...and beyond
Notes

Finite and discrete probability distributions

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Finite probability distributions: basic definitions
Conditional probability and independence

Random variables

Expectation and variance

Some useful bounds

The birthday paradox

Hash functions

Statistical distance

Measures of randomness and the leftover hash lemma (x)

6.10 Discrete probability distributions
6.11 Notes

Probabilistic algorithms

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Basic definitions

Approximation of functions

Flipping a coin until a head appears

Generating a random number from a given interval
Generating a random prime

Generating a random non-increasing sequence
Generating a random factored number

The RSA cryptosystem

Notes

Abelian groups

8.1 Definitions, basic properties, and examples
8.2 Subgroups

8.3 Cosets and quotient groups

8.4 Group homomorphisms and isomorphisms
8.5 Cyclic groups

8.6 The structure of finite abelian groups (*)
Rings

9.1 Definitions, basic properties, and examples
9.2 Polynomial rings

74
74
78
81
85
86
94

96

96

99
104
111
117
121
125
130
136
141
147

148
148
155
158
159
162
167
170
174
179

180
180
185
190
194
202
208

211
211
220

10

11

12

13

14

15

Contents

9.3 Ideals and quotient rings
9.4 Ring homomorphisms and isomorphisms

Probabilistic primality testing

10.1 Trial division

10.2 The structure of Z,

10.3 The Miller-Rabin test

10.4 Generating random primes using the Miller-Rabin test
10.5 Perfect power testing and prime power factoring

10.6 Factoring and computing Euler’s phi function

10.7 Notes

Finding generators and discrete logarithms in Z;
11.1 Finding a generator for Z,

11.2 Computing discrete logarithms Zy

11.3 The Diffie-Hellman key establishment protocol
11.4 Notes

Quadratic residues and quadratic reciprocity
12.1 Quadratic residues

12.2 The Legendre symbol

12.3 The Jacobi symbol

12.4 Notes

Computational problems related to quadratic residues

13.1 Computing the Jacobi symbol

13.2 Testing quadratic residuosity

13.3 Computing modular square roots
13.4 The quadratic residuosity assumption
13.5 Notes

Modules and vector spaces

14.1 Definitions, basic properties, and examples
14.2 Submodules and quotient modules

14.3 Module homomorphisms and isomorphisms
14.4 Linear independence and bases

14.5 Vector spaces and dimension

Matrices

15.1 Basic definitions and properties

15.2 Matrices and linear maps

15.3 The inverse of a matrix

15.4 Gaussian elimination

15.5 Applications of Gaussian elimination

vii

231
236

244
244
245
247
252
261
262
266
268
268
270
275
281

283
283
285
287
289

290
290
291
292
297
298

299
299
301
303
306
309

316
316
320
323
324
328

viii

16

17

18

19

20

Contents

15.6 Notes

Subexponential-time discrete logarithms and factoring
16.1 Smooth numbers

16.2 An algorithm for discrete logarithms

16.3 An algorithm for factoring integers

16.4 Practical improvements

16.5 Notes

More rings

17.1 Algebras

17.2 The field of fractions of an integral domain
17.3 Unique factorization of polynomials

17.4 Polynomial congruences

17.5 Polynomial quotient algebras

17.6 General properties of extension fields

17.7 Formal power series and Laurent series
17.8 Unique factorization domains (x)

17.9 Notes

Polynomial arithmetic and applications

18.1 Basic arithmetic

18.2 Computing minimal polynomials in F[X]/(f) (I)

18.3 Euclid’s algorithm

18.4 Computing modular inverses and Chinese remaindering
18.5 Rational function reconstruction and applications

18.6 Faster polynomial arithmetic (x)

18.7 Notes

Linearly generated sequences and applications

19.1 Basic definitions and properties

19.2 Computing minimal polynomials: a special case
19.3 Computing minimal polynomials: a more general case
19.4 Solving sparse linear systems

19.5 Computing minimal polynomials in F[X]/(f) (II)
19.6 The algebra of linear transformations (x)

19.7 Notes

Finite fields

20.1 Preliminaries

20.2 The existence of finite fields

20.3 The subfield structure and uniqueness of finite fields
20.4 Conjugates, norms and traces

334

336
336
337
344
352
356
359
359
363
366
371
374
376
378
383
397
398
398
401
402
405
410
415
421

423
423
428
429
435
438
440
447

448
448
450
454
456

21

22

Contents

Algorithms for finite fields

21.1 Testing and constructing irreducible polynomials

21.2 Computing minimal polynomials in F'[X]/(f) (III)

21.3 Factoring polynomials: the Cantor-Zassenhaus algorithm
21.4 Factoring polynomials: Berlekamp’s algorithm

21.5 Deterministic factorization algorithms (x)

21.6 Faster square-free decomposition (x)

21.7 Notes

Deterministic primality testing

22.1 The basic idea

22.2 The algorithm and its analysis
22.3 Notes

Appendiz: Some useful facts
Bibliography

Index
Index

of notation

ix

462
462
465
467
475
483
485
487

489
489
490
500
501
504
510
512

1

Basic properties of the integers

This chapter discusses some of the basic properties of the integers, including
the notions of divisibility and primality, unique factorization into primes,
greatest common divisors, and least common multiples.

1.1 Divisibility and primality
Consider the integers Z := {...,—2,-1,0,1,2,...}. For a,b € Z, we say
that b divides a, or alternatively, that a is divisible by b, if there exists
¢ € 7 such that a = be. If b divides a, then b is called a divisor of a, and
we write b | a. If b does not divide a, then we write b1 a.
We first state some simple facts:

Theorem 1.1. For all a,b,c € Z, we have
(i) ala,1|a, anda|0;
(ii) 0| a if and only if a = 0;
(111) a | b and a | ¢ implies a | (b+ ¢);
(iv) a | b implies a | —b;
(v) a|bandb|c implies a | c.
Proof. These properties can be easily derived from the definition using ele-
mentary facts about the integers. For example, a | a because we can write
a=a-1; 1| a because we can write a = 1-a; a | 0 because we can write

0 = a-0. We leave it as an easy exercise for the reader to verify the remaining
properties. O

Another simple but useful fact is the following:

Theorem 1.2. For all a,b € Z, we have a | b and b | a if and only if a = £b.

