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Modern Birkhauser Classics

Many of the original research and survey monographs in pure and
applied mathematics published by Birkhauser in recent decades
have been groundbreaking and have come to be regarded as foun-
dational to the subject. Through the MBC Series, a select number of
these modern classics, entirely uncorrected, are being re-released in
paperback (and as eBooks) to ensure that these treasures remain ac-
cessible to new generations of students, scholars, and researchers.
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PREFACE

The term convexity used to describe these lectures given at the Univer-
sity of Lund in 1991-92 should be understood in a wide sense. Only Chap-
ters I and II are devoted to convex sets and functions in the traditional sense
of convexity. The following chapters study other kinds of convexity which
occur in analysis. Most prominent is the pseudo-convexity (plurisubhar-
monicity) in the theory of functions of several complex variables discussed
in Chapter IV. It relies on the theory of subharmonic functions in R?, so
Chapter III is devoted to subharmonic functions in R™ for any n. Existence
theorems for constant coefficient partial differential operators in R™ are re-
lated to various kinds of convexity conditions, depending on the operator.
Chapter VI gives a survey of the rather incomplete results which are known
on their geometrical meaning. There are also natural classes of “convex”
functions related to subgroups of the linear group, which specialize to sev-
eral of the notions already mentioned. They are discussed in Chapter V.
The last chapter, Chapter VII, is devoted to the conditions for solvability
of microdifferential equations, which can also be considered as a branch of
convexity theory. The whole chapter is an exposition of a part of the thesis
of J.-M. Trépreau.

Thus the main purpose is to discuss notions of convexity — for functions
and for sets — which occur in the theory of partial differential equations
and complex analysis. However, it is impossible to resist the temptation to
present a number of beautiful related topics, such as basic inequalities in
analysis and isoperimetric inequalities. In fact, this gives an opportunity to
show how conversely the theory of partial differential equations contributes
to convexity theory. Originally I also planned to discuss the role of con-
vexity in linear and non-linear functional analysis, but that turned out to
be impossible in the time available. Another topic which is conspicuously
missing is the theory of the real and the complex Monge-Ampére equations,
which should have been presented in Chapters II and IV.

Convexity theory has contacts with many areas of mathematics. How-
ever, only applications in complex analysis and the theory of linear partial
differential equations are discussed here, without aiming for completeness.
I hope that in spite of that the book will prove useful for readers with main
interest in other directions, and that it does justice to the beauty of the
subject.

To minimize the number of references relied on I have often referred to



vi

my books denoted by ALPDO and CASV (see the bibliography at the end)
instead of original works. Further references can be found in these books.
At the beginning of the notes no prerequisites are assumed beyond calculus
and linear algebra. Measure and integration theory are required in Section
1.7 and from Chapter III on. Distribution theory has been used system-
atically from Chapter III when it simplifies or clarifies the presentation,
even where it could be avoided. However, only the most elementary part
of the first seven chapters in ALPDO are required. Some background in
differential geometry is assumed in Section 2.3, and the proof of the Fenchel-
Alexandrov inequality there requires some knowledge of elliptic differential
operators. At the end basic Riemannian geometry is also required, and
Section 6.2 assumes familiarity with pseudodifferential operators. The last
section, Section 7.4, assumes some background in analytic microlocal anal-
ysis, and some knowledge of symplectic geometry is needed in Section 7.3.
Only the simplest facts from functional analysis are needed except in Sec-
tion 6.3 where deeper results on duality theory are used. However, these
are exceptions which can be bypassed with no loss of continuity. Apart
from these points the notes should be accessible to any graduate student
with an interest in analysis.

As already mentioned Chapter VII is based on J.-M. Trépreau’s thesis.
The presentation here owes much to the patience with which he has cor-
rected and improved earlier versions; any remaining mistakes are of course
my own. I wish to thank him for all this help and for informing me about
improvements that he made in a recent unpublished manuscript. In the
final version they have been partially replaced by still more recent unpub-
lished results due to A. Ancona presented in Section 1.7 and at the end of
Sections 3.2 and 4.1. I am grateful for his permission to include them here.

I would also like to thank Anders Melin for his critical reading of a large
part of the manuscript, and M. Andersson, M. Passare and R. Sigurdsson
who agreed to the inclusion in Chapter IV of some material from an un-
published manuscript of theirs. Thanks are also due to the publishers and
their referees.

Lund in June 1994

Lars Hormander
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CHAPTER 1
CONVEX FUNCTIONS OF ONE VARIABLE

Summary. Section 1.1 just recalls well-known elementary facts which are
essential for all the following chapters. Section 1.2 is devoted to proofs of ba-
sic inequalities in analysis by convexity arguments. The Legendre transform
(conjugate convex functions) is discussed in Section 1.3 in a spirit which
prepares for the case of several variables in Chapter II. Section 1.4 is an
interlude presenting an interesting characterization of the I' function by the
functional equation and logarithmic convexity, due to Bohr and Mollerup.
We introduce representation of convex functions by means of Green’s func-
tion in Section 1.5, as a preparation for the representation formulas for
subharmonic functions. In Section 1.6 we discuss some weaker notions of
convexity which occur in microlocal analysis. Section 1.4 and most of Sec-
tion 1.6 can be bypassed with no loss of continuity. The last section, Section
1.7, studies when the minimum of a family of (convex) functions is convex.
The extension to (pluri-)subharmonic functions in Chapters III and IV will
be essential in Chapter VII.

1.1. Definitions and basic facts. Let I be an interval on the real
line R, which may be open or closed, finite or infinite at either end, and
let f be a real valued function defined in 1.

Definition 1.1.1. f is called conver if the graph lies below the chord
between any two points, that is, for every compact interval J C I, with
boundary dJ, and every linear function L we have

(1.1.1) sup(f — L) = sup(f — L).
J aJ

One calls f concave if — f is convex.

Let 0J = {z1,z,}. An arbitrary point in J can then be written A\;z; +
Aozo where A\; > 0 and Ay + A; = 1. Since L(A\1z; + Apx2) = M L(z1) +
Ao L(z,), and we can choose L and a constant a with L +a = f on dJ, it
follows that (1.1.1) is equivalent to
(1.1.1)
fuzi+Aeza) < A f(z)+A2f(z2), if A1, A2 20, Mi+Ae =1, 71,72 € 1.

If f is both convex and concave, then there must be equality in (1.1.1)’,
that is, f = L + a where L is linear and a is a constant. Such a function
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is called affine; it can of course be uniquely extended to all of R. More
generally, a map f between two vector spaces is called affine if it is of the
form f = L 4+ a with L linear and a constant. This is equivalent to

(1.1.2) frzy + Aaza) = A f(z1) + Aaf(z2), when Ay + Ay = 1.

Indeed, if L = f — f(0) we obtain L(Az) = AL(z) when zo = 0, hence
L(z; + z3) = L(z1) + L(z2) follows if Ay = X\, = 3. This means that L is
linear. Conversely, if f = L + a with L linear we obtain not only (1.1.2)
but more generally

n

(1.1.2) FONm) =3 Xflxy), if Y A=1
1 1

1

The following statements are immediate consequences of (1.1.1) or
(1.1.1)":

Theorem 1.1.2. If f; are convex functions in I and c; € R are > 0,
j=1,...,n, then f =Y T ¢;f; is a convex function in I.

Theorem 1.1.3. Let f,, @ € A, be a family of convex functions in I,
and let J be the set of points z € I such that f(z) = sup,ea fa(z) is
< 4o0o. Then J is an interval (which may be empty) and f is a convex
function in J. If f;, 7 = 1,2,..., is a sequence of convex functions and J
is the set of points z € I where F(z) = lim;_ f;(z) < +00, then J is an
interval and F is a convex function in J unless F = —oo in the interior of
J or J consists of a single point.

To prove the second statement one just has to write F(z) = lim Fn(z)
where F(z) = sup, v f;(z) and use the obvious first part.

Exercise 1.1.1. Prove that one cannot replace sup by inf or lim by lim
in Theorem 1.1.3.

Exercise 1.1.2. Let I and J be two compact intervals with J C I and
lengths |I|], |J|, and let f be a convex function in I. Prove that if m and
M are constants such that f < M in I and f > m in J then

f2M—(M-m)I|/(|J] +d(J,dI)) inl,

where d(J, 0I) is the shortest distance from J to 0I and the denominator
is assumed # 0.
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Theorem 1.1.4. Let f be a real-valued function defined in an interval
I, and let ¢ be a function defined in another interval J with values in I.
Then f o ¢ is convex for every convex f if and only if ¢ is affine; and fo ¢
is convex for every convex o if and only if f is convex and increasing.

Proof. 1If f o p is convex for f(z) = z and for f(z) = —z, then ¢ is both
convex and concave, hence affine. Conversely, if ¢ is affine it is obvious
that f o ¢ inherits convexity from f. Now assume that f o ¢ is convex for
every convex . Taking ¢(z) = = we conclude that f must be convex. If
y1 < 2 are points in I, then ¢(z) = y1 + (y2 — y1)|z| is convex in [-1,1] ,
and if f o is convex it follows since fop(£1) = f(y2) and fop(0) = f(y1)
that f(y1) < f(y2), so f must be increasing. Conversely, assume that f is
increasing and convex, and let 21,22 € I, A1, A2 > 0, A; + Ay = 1. Then

flo(Mzy + Aazo)) < f(Arp(z1) + A2p(z2)) < AL f(w(z1)) + Ao f(0(z2)),

where the first inequality holds since ¢ is convex and f is increasing, the
second since [ is convex. This completes the proof.

If 1, < £ < zo then £ = Ajz1 4+ Az for Ay = (z9 — 2) /(22 — 1),
Ao = (z — 1)/(z2 — z1), so (1.1.1)" means that

(z2 — 21)f(z) < (22 — 2) f(21) + (z — 71)f(22), thatis,
(L1 (f(2) = f(z1)/(z — 21) < (f(z2) = f(2))/ (22 = 2).

Hence we have:

Theorem 1.1.5. f is convex if and only if for every x € I the difference
quotient (f(z + h) — f(z))/h is an increasing function of h whenz + h € I
and h # 0.

Corollary 1.1.6. If f is convex then the left derivative f/(z) and the
right derivative f!(x) exist at every interior point of I. They are increasing
functions. If x1 < z, are in the interior of I we have

(1.1.3)  fi(z1) < fi(z1) < (f(x2) = f(21))/ (22 — 21) < fi(22) < fr(22).

In particular, f is Lipschitz continuous in every compact interval contained
in the interior of I.

There is no need for f to be continuous at the end points of I, but f(z)
has a finite limit when z converges to a finite end point of I belonging to
I, again by Theorem 1.1.5. Changing the definition at the end points if
necessary we can therefore assume that f is continuous also there. The
right (left) derivative exists then at the left (right) end point but may be
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—00 (4+00). If we allow f to take the value +o0o we can always make the
interval I closed.

Using the continuity of f we obtain from (1.1.3) if z; < z, are points in
I

(1L13) lim fi(@+¢) < (f(z2) = f@)/(2 - 71) < lim, fi(z2 — c).

If we let 5 | 1 or z; T x5, we obtain

Theorem 1.1.7. If f is convex in I and z is an interior point, then

(1.1.4) fi@) = lim fiz+e) = lim fi(z+e),
(1.15) fi@) = lim fi(@ €)= lim fi(z—e).

We shall therefore write f'(z+0) = f/(z), f'(z —0) = f/(z). The following
conditions are equivalent

(1) f] is continuous at z;
(2) f! is continuous at z;
(3) fl(z) = f/(z), that is, f is differentiable at .

These conditions are fulfilled except at countably many points.

Proof. The last statement follows from the fact that if z; < z, are points
in I, then

ST (fi@) - fi(2)) < filz2) = fi(z1) < 0.

1 <z<T?

Exercise 1.1.3. Let z;,z,,... be different real numbers and let a; > 0
be chosen so that 3°7° a;(1 + |z;]) < co. Show that

f@)=>"ajlz - z]

1

is a convex function and that

filz;) = fl(z;) = 205, V5 f'(x) =) a;sgn(z —gz;) ifz #x; Vj.
1
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Exercise 1.1.4. Show that if f; are non-negative continuous convex
functions in a compact interval I and f = Y .7° f; converges at the end
points, then f is continuous and convex in I and

fl(z+0) = Zf T +0)

for every z in the interior of I.

Exercise 1.1.5. Show that if f; are convex functions in the interval I
and f;(z) — f(z) € R for every x € I, then f is convex in I and f; — f
uniformly on every compact interval contained in the interior of I. Show
that

fe-0)< lim fi(z~0) < Fm fi(z+0) < f@+0), j—eo

J—o

for every z in the interior of I. Give an example where there is inequality
throughout.

Exercise 1.1.6. Let I be an open interval and f; a sequence of convex
functions in / having a uniform upper bound on every compact interval
J C I. Prove that either f; — —oo uniformly on every such interval J or
else there is a subsequence f;, converging uniformly on every J to a convex
function.

Exercise 1.1.7. Let f be convex in the interval I and bounded above
there. Show that f is decreasing (increasing) if I is infinite to the right
(left); thus f is constant if I = R.

To prove a converse of Theorem 1.1.7 we need a suitable form of the
mean value theorem:

Lemma 1.1.8. Let f be a continuous function in a closed interval
{z;a < = < b} such that f](z) exists when a < = < b. If fli(z) > C
for all such z then f(b) — f(a) > C(b — a). If instead f.(z) < C then
f(b) = f(a) < C(b—-a).

Proof. 1t suffices to prove the first statement. If C’ < C then
F =A{z € [a,b]; f(z) - f(a) > C'(z — a)}

is closed because f is continuous, and a € F. The supremum y of F is in
F| and y = b since we would otherwise have

fly+h)=f(a) = f(y+h)—f(¥)+f(y)-f(a) > C'h+C’'(y—a) = C'(y+h—a)
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for sufficiently small b > 0, contradicting the definition of y. Hence f(b) —
f(a) > C'(b — a) for every C' < C which proves the lemma.

The lemma gives the inequality

(1.1.6) inf £/ < (f(b) — f(a))/(b— a) < sup f.,

[a;b) [a.b)

and we obtain:

Theorem 1.1.9. If f is a continuous function in the interval I such
that f] exists at every interior point = of I and increases with x, then f is
convex, and fzy fit)dt = f(y) — f(z), z,y € I. (The same result is true
with f] replaced by f/.)

Proof. (1.1.1)"" follows at once by (1.1.6) if z; < = < =z, are interior
points of I. Since f is continuous the inequality remains valid if z; or z,
is a boundary point, so the convexity follows in view of Theorem 1.1.5.
The sccond statement follows since the right derivative of fry fi(t) dt with
respect to y is equal to f/(y) by the monotonicity and right continuity.

Corollary 1.1.10. Let f be a continuous function in I which is in C?
in the interior of I. Then f is convex if and only if f"" > 0 there. If f"” > 0
one calls f strictly convex.

Example 1.1.11. f(z) = e®* is a convex function on R for every a € R.
If » > 1, then f.(z) = z" is a convex function when z > 0, if 7 < 0 then
fr is convex when z > 0, but if 0 < r < 1 then z" is concave when = > 0.
The functions g(z) = zlogz and h(z) = — log z are convex when z > 0.

Another immediate consequence of Theorem 1.1.9 and Corollary 1.1.6
1s:

Corollary 1.1.12. Convexity is a local property: If f is defined in an
interval I and every point in I is contained in an open interval J C I such
that the restriction of f to J is convex, then f is convex.

We have defined convexity in terms of affine majorants, but there is also
an equivalent definition in terms of affine minorants:

Theorem 1.1.13. A real-valued function f defined in an interval I is
convex if and only if for every x in the interior of I there is an affine linear
function g with ¢ < f and g(z) = f(x).

Proof. Assume that f is convex. Choose k € [f/(z), f}(z)] and let g(y) =
f(x) 4+ k(y — z). Since g(z) = f(z) and (1.1.3) gives
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the necessity is proved. Now assume that f satisfies the condition in the
theorem. We must prove that (1.1.1)" holds. In doing so we may assume
that z1 # =, and that A; Ay > 0, which implies that £ = A1z, + Aoz5 is an
interior point of I. If g is an affine minorant of f with f(z) = g(z) then

2

2 2
Y Xfr) = Aales) = 9 Ajzy) = g(z) = f(x),
1 1

1
which completes the proof.

In view of (1.1.2)" the second part of the proof gives a much more general
result with no change other than extension of the summation from 1 to n:

Theorem 1.1.14. Let f be convex in the interval I, and let z,,...,z, €
I. Then we have

(LI F(OONw;) <D N f(xs), ifAr,..., A >0, Y A=
1 1 1

If \; > 0 for every j, then there is equality in (1.1.1)"" if and only if f is
affine in the interval [min z;, max z;].

Exercise 1.1.8. Prove (1.1.1)"” directly from (1.1.1)" by induction with
respect to n.

(1.1.1)"" is usually called Jensen’s inequality, and so is the following more
general version involving integrals instead of sums:

Exercise 1.1.9. Let f be a convex function in the interval I, let T be
a compact space with a positive measure du such that [.du(t) = 1, and
let z(t) be a p integrable function on 7' with values in I. Prove that

f(/T t)dpu(t /f z(t))du(t)

Exercise 1.1.10. Let II be an orthogonal projection in a finite dimen-
sional Euclidean vector space E. Show that if A is a symmetric linear
operator in E then

Tr (TLf (MAIDIT) < Tr (TLf (A)T)

for every convex function f (Berezin’s inequality). (Recall that if B is a
linear transformation in £ then Tr B = )"(Be;,, ¢;) if e; is any orthonormal
basis in £ and (-, -) denotes the scalar product. If B is symmetric then f(B)
has the same eigenvectors as B with every eigenvalue A replaced by f()).
— Hint: Express both sides in terms of the eigenvectors of IIAII in IIE
and of A in F.)



