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The Boundary Element Method for Stress Concentration and Fracture
Problems

S. Ellis, R.N.L. Smith and J.C. Mason

Computational Mathematics Group, Royal Military College of Science,
Shrivenham, Swindon, Wiltshire

Abstract

An implementation of the boundary element method for two-dimensional
elasticity and fracture problems is described, and results for of
stress concentration, and straight and curved crack problems are
given. A transformation of a body force integral to a boundary
representation is presented and an example of it's use with a crack
problem is illustrated.

1 Introduction

The boundary element method (BEM) is now established as a powerful
tool for the solution of linear partial differrential equations. In
particular, elliptic problems such as those arising in potential
theory or elasticity have proved to be especially suited to the BEM
approach.

For the solution of stress or fracture problems, the BEM is likely to
be superior to other general methods such as the finite element method
(FEM) in a number of ways. Since only the boundaries of a body need to
be discretized, very much smaller systems of equations are generated
than with the FEM. (Whilst smaller, they are in general fully
populated. However, provided the ratio of the boundary length to area
is not excessive, boundary methods retain their superiority.) As no
internal approximation is made, a higher stress accuracy is achieved,
values of solution variables are obtained at a limited number of
points, and it is possible to concentrate on particular regions of
interest (e.g. stress concentrations, cracks and interfaces). The
superiority of the BEM is particularly marked for those problems where
the boundary stresses change rapidly as in stress concentration and
fracture problems.

The technique involves superposition of particular solutions of the
governing differential equations. In the direct integral equation
formulation the wunknown functions are the physical stresses and
displacements on the boundaries, and the basic analytical solutions
used are those for a unit force applied to an infinite region in which
the physical region is 'embedded'. A summary of the derivation of the
integral equation for two-dimensional elasticity 1is presented,
followed by a description of our numerical implementation of the BEM
for this equation.

A typical stress concentration problem is that of plates of differing
widths joined by a simple curve and loaded under tension. The problem
is modelled using our two-dimensional boundary element program with



isoparametric elements. The BEM solutions are compared with those
obtained by photoelastic stress analysis with good agreement over a
wide range of plate shapes.

The basic BEM formulation must be modified to deal with general
fracture problems where cracks are to be modelled. The stresses at the
tip of a sharp crack in a perfectly elastic region may be expressed in
terms of an infinite series of the form

6 = K F(8) Jr + non-singular terms

and the boundary elements should be modified to model this knwn
behaviour. With suitably modified elements the accuracy of the BEM is
much improved and both straight and curved cracks may be considered.
We give examples of BEM solutions which demonstrate these points, and
which compare favourably with established analytical and numerical
results.

Some simple body forces such as rotational, gravitational or thermal
loads may be transformed into equivalent boundary forces. We give an
example of this transformation for a crack problem and discuss two
sets of finite element results for the same problem.

2 Integral equation formulation

The formulation of the direct method, which is summarised below,
follows the approach used by Lachat and Watson |ll| , and it is
restricted to two-dimensional homogeneous linearly elastic regions.
As is customary vectors such as points x and y are not underlined and
tensor notation is adopted.

Fundamental solutions for displacements Ui.(x,y) and tractions
T..(x,y), are determined from the governing équations for a point

i . A .
foﬂce in an infinite elastic space

a_é’kj + Si = 0 (2.1)

axk

and are found to be

U..(x,y) = 1 [ (3-4v) In(1/r) §.. + r,.r,.
1J 87T (1-) * o (2.2)
T. . (x,y) = -1 1 [r (k S..+2r,.r,.) + k(r,.n. —r,.n.) 1
1 2m(i-v) = - 1) 1) J 1 1] J
where ; are elastic constants, n. = n,(x) is the outward normal to
R at x, and , * : ’
r = (x, -y.) (x —y)l/2
i i i i
(2.3a)
r,, = or =1(x -vy,)
ox T



dr = dr n. = 1 (x, - y.)n,
T 5;i i o i i’

(2.3b)
k = (1-2v)

The traction ti(x) on the tangent plane corresponding to the
complementary function ui(x), is given by

v, (x) = s;j [u) nj(x) (2.4)

The boundary integral equation may now be derived using the divergence

theorem
J~ ggs(y) v,
v Vs S

We now consider the displacement fields as(y) and bs(y). In equation
(2.5), cs(y) may be replaced by b.(y) 6‘.5 [a], then by a.(y)S’.S [v],
and one of the resulting equationg subtfacted from the dther® This

process gives the equation

2. 3.
b.(y) _ 9°[a) - a.(y) _ °[bl] av
ﬂ, [Jy dy_ 3Ty j y

=,(; {bj(y) Gﬁs[a] - aj(y) 6}S[b] ns(y)] ds_ (2.6)

ns(y)cs(y) dSy (2.5)

which 1is known as Betti's theorem and 1is analogous to Green's
symmetric identity for the Laplace operator. Replacing a.(y) by
u.(y), and b.(y) by U, .(x,y) (for x on S), noting that for & source
free region JBqﬁ./BX% = 0, and taking for V the region R' = R - R
where Re isolateéJtheroint X, we obtain:

J" [Uij(x,y) tj(y) - Tij(x,y) uj(y)} dSy ff~' Uij(x,y) bi(y) dY¥‘7)

e

Here Re is conventionally taken to be the part of R contained within a
sphere of radius e, centre x. Hence, by letting e-> O, with x on S,
we obtain

Cij(X) ”j(X) + _f; Tij(x,y) uj(y) dSy = 'g; Uij(x,y) tj(y) dSy

+ -f‘ Uij(x,y) bi(y) dvy (2.8)
v
where
c. .(x) = lim T. .(x,y) dS
tJ e—>0 J; 1§ Sy
e

If the target plane is continuous at x, then c..(x) = 1/2 5:.. An

expression for the displacement may be obtained %%om Betti's fh%orem
by a similar limiting process in the form



ui(X) = Uij(x,y) ty(y) dSy —‘J; Tij(x’y) uj(y) dSy

J
(2.9)
+ J{;Uij(x,y) bi(y) dVy

The corresponding expression for the stress tensor at an interior
point is

L (x) = D.. (x,y) t (y) as - T..(x,y) u (y) ds
ij g ils Y1 S\ y g L] o ugly y
(2.10)
+ Dijs(x,y) bs(y) dVy
v
where D,, =6.. |U| and S.. = 6.. |T|.
ijs ij ijs ij

3 Numerical implementation

We assume for the moment that body forces are not present. Their
inclusion will be dealt with in section 5.

The boundary S is partitioned, into Ne boundary elements (Figure 3.1),

and the integral equation becomes

Ne .
c. .(x) u.(x) + T. .(x, u,(x das
i ; ) Eil ij y) ; ) 7

S
N (3.1)
< k
= > U, .(x,y) t.(y) ds
k=1)s *J . &
k k ;th .
where u_; s epresent the components of displacement and

traction Jon theJk element.

Figure 3.1 Boundary mesh



On each element the boundary, displacement and traction are assumed to
vary in some simple fashion. Variations are represented by discrete
values at nodes, and basis (or shape) functions are used to obtain a
piecewise approximation. The boundary representation must be piecewise
continuous, and it should also be a reasonable approximation to the
true boundary. However the displacements and tractions may be
discontinuous, and so the geometry and unknown functions may use
different shape functions, with nodes at different positions. 1In
practice it is simpler to use isoparametric elements in which the same
shape functions and nodal positions are used. Typically m+l equally
spaced nodes are placed on each element, and an m degree polynomial
approximation is adopted.

We use quadratic elements (m=2), which allow the modelling of curved
boundaries, and which may be easily modified to allow representation
of certain singularities (see section 4).

We represent the cartesian coordinates x., and the unknowns u and t in
terms of a local coordinate ge[b,lj, ithhe form

j 1 2 3 1

x~ (%) x\j xy Xy N (%)

u(g)| = PR Nz(i) (3.2)
eg)] | o8 & ¢ NS(g)

where Nl(E) are the shape functions (Figure 3.2), and the superscripts
1,2,3 denote the values of the coordinates and unknowns at § = 0, 1/2,
1. Specifically we write

Ng) = 20§ - 1/2)(§ - 1)
5 (3.3)
N°(§) = —4 §(§ - 1)
N5 = 25 (5 - 1/2)
a4 vt et
— \w —
Nt 5 g

Figure 3.2 - Quadratic shape functions



Substituting these representations into the integral equation gives

Ne 1 3
a k,
ey (0) u ()« > 2 T, 06y () W (5) uy 235 a

k

k

=170 a=1

=1" 0 a=1

where J({) is the Jacobian

3
a a
J(g) = jz: dM™ (%) v
a=1

(3.4)
Ne 1 3
a k,a
= ;Ej :Ej Uij(x,y(i)) MO(5) t07 J(5) d
2 2 1/2

3
(2 a9 vi
a=1

In matrix form the equation becomes

N 3 N 3
Z Z pkea kha Z Z’ gkoa gkoa (3.5)

c(x) ulx) +
where
CcC =
u =
and
pij
qij

k=1 a=1
€11 ©12| P
Co1 C22
.ul and
_.u2

f

T, (Y (§))

Uij(x,yCi))

The analytical evaluation of the

difficult for quadratic elements

use Gauss quadrature
additional complication arises in the use of numerical methods owing
to the presence of the term log(l/r) in the second integral. When the
boundary point x is a node of the element being integrated over, r is
zero at that node. The integral is therefore weakly singular at x. It
can be shown (Smith [17|) that this integral can be written as

I
s

1

formulae

k=1 a=1
P11 P2 a= 991 92
Po1 Ppp 9, 9
t = [t
. (3.8)
s

M(€) J(§) af

(3.7)
M(g) J(§) d§

integrals (3.7) appears to be very
with curved geometry. We therefore
to obtain approximate values. An

flog(ﬁ M2 (g) J(§) dg +
0



1
- Jlog(A €2 . B§+ C) M(g) J(g) Af (3.8)
0

where the second integral does not contain a singularity for elements
of modest size and curvature. The first integral is evaluated with
weight function log(§), and the second integral with weight function
1. Numerical experiments indicate that integration rules of order 6
are sufficient for typical problems, and we use such rules in all
subsequent examples.

h
If we consider the point x to be the mt of N Dboundary nodes, then we
may express (3.5) in terms of the coefficieﬁ%s for displacements and
tractions at each node

N
n
c u_ + h u
m m 2 mn n
n=1

or (C + H) u

Il

I1e]
3
=]
3

(3.9)

I
(o]
t

Note that for nodes at the junction of two elements these coefficients
include contributions from both elements, so that

B . _k-1,3 k,1 _ L3 kil

m = P + P g, = 4d q
_ k,2 _ k,2

hmn = p g, = 4 (3.10)
_ k,3 k+1,1 L k8 k+1,1

hmn = p + p &n - 4 + q

are contributions to the three nodes in element k from elements k-1,
k, and k+1.

The blocks c_ may be determined by considering rigid body motion.
Suppose that unit rigid body translations occur in directions k, with
zero applied tractions. Then

(C+H)Lk=0

and the diagonal blocks must therefore be given by

R
(C + H)ii = :E: hi.
j=1 J

J#i

If we assume that tractions are continuous, then for each node we have
two equations in four variables. Two of these are known, and the
system of equations may be reordered with all the unknowns on the left
hand side.

Discontinuous applied tractions are dealt with by constructing the
right hand side using only the contributions to g in (3.10) from the
element on which each traction is applied. For discontinuous unknown
tractions more equations must be generated and techniques dealing with



this problem are dealt with by Patterson and Sheikh |14|. The
implementation above produces an '"average' value, which for a large
number of problems is adequate.

We solve the resulting system of equations, in most cases, using Gauss
elimination. In some cases, when all boundary conditions are tractions
the displacements include an arbitrary rigid body displacement. If at
least two equations are replaced by equations specifying displacements
at particular nodes this difficulty is overcome. Alternatively, the
existing system of equations may be solved in a least squares sense.

Stresses are calculated wusing derivatives of the calculated
displacements. The stresses are discontinuous across element
boundaries, and a simple smoothing technique 1is employed to yield
continuous values. The displacement derivatives are averaged at
element boundaries and these average values are used to evaluate the
stresses.

3.1 Example 1 — Stress concentrations in shouldered plates

The effect of changes in boundary shape on surface stresses is
characterised by the stress concentration factor, which may be used
subsequently to estimate the likelihood of crack formation. Values of
stress concentration factors K, for a range of commonly used used

shapes are given by Peterson |1§| , who defines K, as
= 6
Kt max /o‘nom
where o” is the maximum stress in the region under consideration and

’hom is the nominal applied stress.

[l ]
« ' L
«— 4+ 4 L
3
k } ] I V2 Wy l

F 3/2 w, : ‘ﬂ

Figure 3.3 - Boundary element mesh for a shouldered plate

The problem of determining stress concentration factors for plates of
differing widths Jjoined by a part-circular arc is examined in a number
of publications. For example Fessler et al |9| and Wilson and White
|23| use photoelastic techniques to examine the variation of boundary
stresses and determine stress concentration factors. We use our BEM to
compare the stress variation in shouldered plates with that obtained
by photoelastic analysis. A typical boundary element mesh is shown in
Figure 3.3, and the stress variations obtained for two examples of
corner radil are plotted in Figure 3.4.



o | 2 3 4 S <
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Figure 3.4 — Stress variation on a plate boundary (wl/w2 = 2.0)

The BEM results are shown by the full lines, and the results of
Fessler et al are plotted point by point. The amount of scatter in the
experimental results makes it difficult to draw a smotth curve and
determine the maximum values exactly. In contrast, the BEM values form
smooth curves with well determined maxima. The higher of the two peaks
in Figure 3.4 corresponds to the case r/w = 0.036 for which Fessler et
al obtain K, = 3.7 at 6= 30°, and the BEM curve gives K, = 3.7 at 8 =
23.5°. Although there is apparently a significant difference between
the two methods, the BEM curve is reasonably consistent with the
experimental results given the amount of scatter therein. The lower
peak in Figure 3.4 corresponds to r/w = 2.8 with K, = 2.7 at 8 = 22°
(Fessler), K, = 2.8 at 8= 21° (BEM). Agreement betwéen the two methods
may therefore be considered satisfactory, although further comparisons
would be useful.

An extension to these problems is investigated by Smith and Crook |18]

who examine problems with cracks at the reentrant corners of
shouldered plates.

4 Linear elastic fracture and crack modelling

Linear elastic fracture mechanics assumes perfectly elastic regions
and does not consider effects such as plasticity in the crack tip
region. Nevertheless results obtained by the application of a linear
model are widely adopted as reliable indicators of maximum stress
levels and hence predictors of possible crack growth.

In two dimensions we consider two possible independent movements of
the crack surface. They are the crack opening mode (mode I), and the
crack sliding mode (mode II). These two modes are illustrated in
Figure 4.1 below.

Conventionally, crack tip behaviour is expressed in an infinite series
expansion due to Williams [22|. Series in increasing powers of
displacements corresponding to the two modes may be derived via
suitable stress functions (Paris and Sih |13]|), and the first non-zero



terms in each series is given below.

(a) Mode I displacement

b)

X

(b) Mode II displacement

Figure 4.1 - Two dimensional fracture modes

Mode I

where K

Mode II

= I cos@[1
2T 2

= KI cos 6 1
vonmr 2

= KI sin @ cos
vemr 2

1) cos g - cos 32] -
2 2

1) sin @ - sin Bé] +

2 2
= 2 r lim o~
r->0
K 5
=-_1I sin § 2 + cos B cos 38
vemr 2 2 2
K .
= II sin § cos g cos 39 +
VEﬂF 2 2 2
= KII cos B 1 - sin @ sin 360
|ﬁﬁﬁ‘ 2 2 2
K . .
= IF E [(2 K+ 2) sin 8 + sin 30
4p m 2 2
K _
= II f_r L(ZK— 3) cos O - cos 38
AF 2T 2 2

10

+

(4.1)

(4.2)



where K = JZﬂr lim <
II Xy
r—0
Here K is the shear modulus and is (3 + v) for plane strain, and
(3 - v)(1 + v) for plane stress.

The crack tip geometry is defined in figure 4.2.

4
J
ﬁ u
—>
r
E
(%)
4 o
8
Cc

Figure 4.2 - Crack tip geometry

K. and K define the magnitude of the crack ¢tip stress field
singularity, and are termed stress intensity factors (SIFs). They are
important parameters, and connect with fracture theory through the
postulate that a crack will grow when the SIFs reach particular
values.

An idealised crack configuration (where both surfaces lie in the same
plane) involves a surface discontinuity. Application of the standard
direct BEM to such a configuration produces a singular algebraic
system which contains no information about the crack surface, since
the method cannot distinguish between two surfaces in the same plane.
Crack geometries were initially approximated by seperating the
surfaces some small distance. This crude approach leads to results of
rather limited accuracy.

However, if the problem happens to be symmetric about the crack, then
only one region and hence only one side of the crack needs to be
considered, and the resulting linear algebraic system contains the
relevant information, and may be solved successfully (Cruse |4]).

For some special cases, a Green's function is available, and then the
fundamental solutions may be determined for a crack or a hole in an
infinite region. Once these modified solutions have been incorporated
into the integral equation, only the non-cracked boundary may be be
modelled. Very accurate results are possible with this approach
(Snyder and Cruse |23]).

We have adopted the more general technique of '"stitching'", which
permits the two sides of the crack surface to be assigned to distinct
subregions. This appears to overcome problems encountered by other
methods and has been used eith success on a number of problems
(Blandford et al |1|). The domain is partitioned so as to
differentiate between pairs of crack surfaces, effectively introducing

1



additional boundaries internal to the domain (Figure 4.3). Continuity
conditions are imposed across partitions, but not of course across
cracks. The geometry of the crack may be represented accurately,
whether or not the crack is on a plane of symmetry, and also curved
cracks may be modelled.

Figure 4.3 - Stitching subregions

Interface conditions are applied by coupling the systems of equations
generated for each subregion, effectively treating the subregions as
large finite elements. Across the interface the displacements u. are
continuous, while the tractions t. are equal in modulus butJ have
opposite signs. Consider the examprﬁ of two subregions as in Figure
4.2. The systems of equations generated may be written as

I 1 .
[, w6l fu] = (6] [t) [, &, Hy) [u] = (6] [t,)]
I I
! B
1 I
Lt u,

where the superscript I denotes interface values. Applying the
continuity conditions

I I I I 1L I
u1 = u2 = u , and tl = -t = t

and combining the equations, gives

[ ;
H H G O {ul G, O t
I I I
0 H, -G, H, u| =10 6, Lt,
I (4.3)
|t
l
Luzl

Boundary conditions are applied as in section 3 to produce a system of

12



linear algebraic equations. This system differs from the first in that
sections of the coefficient matrix are now empty. In most problems we
deal with the matrix is actually block-banded, and this knowledge can
be used to increase the efficiency of our equation solver. Stresses
are sampled in exactly the same manner as for a single subregion.

The equation / 4.1) and (4.2) show that,when r is small, the stresses

biyave as r (within the material) and the displacements behave as
r It has been found advantageous to model the kno%vzbehaviour near
the crack tip (see example 2). Modelling of the r term can be

effectively achieved by using quarter-point elements, in which the mid
point node on a quadratic element is moved to § =) (Figure 4.4).

I r l r
£ £
;o iﬁ il ;=o =1 =|

Figure 4.4 - Quarter-point element

. 2 g
For the quarter-point element, r is equivalent to 1 , where 1 is the
element length, and hence

u
= bO + b1 Jr + b2 r
t
. s -1/2 . .
The stress (traction) variation of r is achlg¥?g by simply
multiplying the crack tip element coefficients by (1 r ) &

t = co//r +oc o+ 02/r

SIFs may be evaluated by a number of methods. Indirect methods may be
used such by considering energy release rate or certain invariant
integrals such as the J-integral. These methods appear to be
computationally expensive with the BEM, and consequently we choose to
use direct methods. There are two considerations which determine the
type of boundary data used for direct computation of SIFs. Firstly,
displacements are generally found to be more accurate than the
corresponding stresses. Secondly, displacements on the crack surface
are larger than those within the material. We therefore evaluate SIFs
from crack openeing displacements.

Different estimates of SIF values are obtained by using different
numbers of <terms in the series expansions (4.1) and (4.2). The
simplest estimate is obtained by using the first terms of the series
expansion for displacements. We label points on the crack tip as in

13



