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Preface

In our technological society, humans are increasingly interacting with machines.
The designers of these machines would like to consider this human—machine
interaction in the same quantitative manner in which they pursue much of the rest
of the design process. To this end, mathematical models of human-machine
interaction are needed. A wide variety of such models is presented here.

This book was written with several goals in mind. First of all, one objective
was to emphasize the current state of the art rather than provide a thorough
historical perspective. Based on this goal, well over 80% of the references cited
have publication dates of 1970 or later. However, readers interested in earlier
works will find excellent sources on this material noted throughout this book.

A second goal was to provide a treatment of a highly mathematical topic while
avoiding calculus, differential equations, Laplace and Fourier transforms, and so
on. Thus, the only mathematical prerequisites for this book include basic algebra
and probability theory. Although representing all of the models algebraically
does result in a few topics (but not too many) being covered rather tersely, it is
hoped that the purely algebraic treatment will make the material covered accessi-
ble to many more readers. Perhaps those readers who find this book stimulating
will go on to study those works that require more extensive mathematical prereq-
uisites.

A third goal was to include basic tutorials on the modeling methodologies of
interest and thus avoid requiring the reader to consult other basic sources. Fur-
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thermore, along with the tutorials, fairly complete examples of applications are
discussed and a breadth of other applications briefly reviewed. The choice of the
characteristics noted in this paragraph was motivated by a desire to employ this
"book as a primary text for a graduate course on human—machine systems that
typically includes both engineering and psychology students.

For the most part, this book is based on lecture notes used for this course,
which is offered in Industrial Engineering at the University of Illinois, as well as
on lecture notes for a short course on modeling human—machine interaction
_ given outside the university. In teaching these courses, I have found that the type
of material presented in this book is nicely complemented by having students
pursue a series of small design projects in which they have to choose among the
various available models, resolve measurement problems, and so on. This ap-
proach leads students to realize, from experience, the ways in which models are
particularly useful. This end is not served as well by specific exercises in which
students primarily learn to manipulate equations. For this reason, a set of such
exercises is not included in this book. However, if such material is desired, the
numerous texts cited throughout this book are more than adequate sources.

To a great extent, this book is also based on the results of the author’s interac-
. tions with colleagues at Illinois, elsewhere in the United States, and in other
countries as well. I am truly indebted to these individuals, who have contributed
greatly to the lines of thought formutated in this book. I am also most grateful to
Carolyn Robins for her editorial assistance in preparing the manuscript.

Urbana, Illinois William B. Rouse
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Chapter 1
Introduction

Humans interact with machines in many ways. Many people drive automo-

biles. Some people repair automobiles. Others fly airplanes, work in nuclear

power plants, or work with computers. In fact, it is not unreasonable to
. claim that humans, in general, are increasingly interacting with machines.

As designers of machines, engineers should be concerned with the way in
which humans interact with machines. This issue is of importance for
several reasons. First, one wants to ensure that machines are safe to
operate. Second, one would like to know how the human’s abilities and
limitations affect the performance of the overall human-machine system.
With this knowledge, the machine can perhaps' be designed so as to
complement the human’s characteristics. Another reason for being con-
cerned with how humans interact with machines involves the problem of
job satisfaction. We should like to design machines so that interacting with
them is satisfying, or at least certainly not demeaning. Although job
satisfaction and safety are not concerms of this book, we mention these
topics here in recognition of their importance.

This book is concerned with the performance of human-machine sys-
tems. Adopting a typical engineering point of view, our goal is to deveipp
methods of analysis that allow one to predict performance. This goal should
be contrasted with that of trying to measure performance. Were measure-
ment our goal, then we would devote this book to the various considera-
tions surrounding the topic of experimental design.
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‘To predict the performance of a human-machine system, we require
some representation of the system that allows us to determine how
independent variables affect dependent variables. To represent a human-
machine system, we shall have to depict both human and machine behavior
in compatible terms. For a variety of obvious reasons, it is appropriate to
represent human behavior in machine-like terms, as opposed to vice versa.
Further, while a good verbal description of the human’s tasks, abilities, and
limitations is certainly an essential first step towards developing a represen-
tation of human behavior, such a description is usually inadequate in that
it will only allow gualitative statements about the performance characteris-
tics of the human. Our goal is to provide quantitative predictions of human
performance.

The engineering approach to obtaining quantitative performance predic-
tions for almost any problem is to develop a mathematical model of that
problem in terms of how relevant inputs (independent variables) affect
interesting outputs (dependent variables). If this approach is successful, and
it is not always successful, then the resulting mathematical model can be
quite useful in several ways.

The Purposes of Models

In general, there are four major uses of models. First of all, the modeling
process is itself beneficial. Developing a mathematical model requires a
very organized and thorough pursuit of all the issues surrounding a
problem. This is especially true when one gets to the stage of writing a
computer program that incorporates the resulting model. At this point, one
often finds that various parameters are undefined or perhaps immeasurable.
Once the model is sufficiently defined to allow the computer program to
produce predictions of performance, then it is not unusual to find the
predictions to be ridiculous when compared to the performance of the real
system. In this situation, one has obviously overlooked some crucial aspect
of the real system. Then, the modeling process iterates and the model is
updated. This iterative process of model development and testing provides
many insights with respect to the system being studied. These insights are
valuable even if the model’s predictions are actually never used.

A second use of models is to provide succinct explanations of data. For
example, a study of the learning of motor skills may result in a learning
curve of rms (root-mean-squared) error versus time. While this tabulation
of error versus time summarizes the results of the study, a much more
succinct explanation might be found using a single parameter to character-
ize learning rate within a mathematical model of learning of motor skills.
Thus, models can be used to aggregate various plots and tabulations into a
few behaviorally meaningful parameters and, in that way, allow much
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clearer comparisons among tasks and experiments while also providing
much simpler “rules of thumb” for systems designers. We shall return to
this point repeatedly throughout this book.

Models are also useful for designing experiments. It is not unusual for a
model to have many free parameters. Estimating these parameters can
present data collection problems. These problems can be lessened if one
tests the model to determine the sensitivity of performance predictions to
parameter variations. If the model’s predictions are fairly insensitive to
some of the parameters, then one can assume “reasonable” values for these
parameters and avoid investing the effort necessary for estimating them.
Similarly, if one is contemplating an empirical study of human perform-
ance, one can use the results of a sensitivity analysis with a model to
determine which parameters should be varied in the empirical study. This
may sound like an unusual procedure. If one had a good model of human
performance in a particular task, then why would one run an empirical
study of that task? On the other hand. if one did not have a good model,
how could one use a model to determine which parameters have the
greatest effect on performance? Quite simply, one can often use an
approximate model to obtain a feeling for the sensitivity of performance to
various parameters. The value of this approach is dependent on how
reasonable the model is regardless of the fact that it has not yet been
experimentally validated. Using models in this way is part of the art of
engineering.

Finally, models are useful in terms of the quantitative predictions that
they produce. While this aspect of model usage is often given too much
emphasis, relative to the other purposes of models. quantitative predictions
are nevertheless useful in the process of designing systems. For example, it
is quite important to know how a pilot and aircraft will interact before one
builds the aircraft. Another example, which we discuss at some length in
Chapters 4 and 7. involves embedding predictive models in computer
programs in a manner that allows the computer to “understand” the user.

Most of the discussions throughout this book will focus on models in
terms of the performance predictions that they produce. However, we want
to emphasize here in our early discussions that one should look at such
predictions as only one of the benefits of modeling.

The Modeling Process

The first step in the modeling process involves defining the problem. This
includes a statement of the phenomena of interest as well as a choice of
performance measures. Thus, for example; one might choose to study the
abilities of air traffic controllers to detect potential midair collisions. One
might designate probability of detection and time until dctection as
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performance measures. As another example, one might decide to investigate
the abilities of maintenance personnel in troubleshooting tasks. Appropri-
ate performance measures for this task would be probability of correct
diagnosis, time needed for diagnosis, and cost of diagnosis.

While this process of defining the problem may seem quite straightfor-
ward, this is far from true. It is not unusual to realize suddenly that one is
working on the wrong problem. Also, it i1s not uncommon to discover that
the performance measures initially chosen are inappropriate. This latter
difficulty can frequently be attributed to the fact that performance meas-
ures are often only indirect indices of desirable system characteristics. For
example, vehicle ride quality is difficult to quantify unless one uses indirect
measures such as rms amplitude of vibrations, and so on. Using such
indirect measures increases the likelthood of choosing inappropriately.
Thus, one should not view problem definition as a necessarily easy portion
of the modeling process. Indeed, it is probably the most troublesome step
in that it is difficult to obtain training (e.g., by reading books such as this)
that will give one the ability to define problems insightfully and appro-
priately. Experience appears to be the key ingredient in this step of the
modeling process.

With the problem defined and candidate performance measures chosen,
the next step of the modeling process involves representing the problem.
What are the system’s inputs? What are its outputs? How do inputs affect
outputs? How are the performance measures of interest affected by the
system’s variables? Representing the problem involves providing answers to
these questions.

Up to this point, we have not been concerned with formalizing our
conception of human-machine systems. However, some formalization is
now necessary if we are to avoid confusing terminology. Figure 1.1 depicts
a basic human-machine system. With this figure, we want to make three
important clarifications. First of all, unless otherwise specified, the term
“system” will refer to the overall combination of human and machine.
Second, the term “machine” will refer to everything other than the human.
Third, and finally, this figure clearly illustrates the notion that the machine’s
outputs are the human’s inputs and the human’s outputs are the machine’s
mputs.

Human

Figure 1.1. Basic human-machine
system. !

Machine
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This last idea is central to much of this book. The output of the human’s
perception/decision/action process may, for example, be the rotation of an
automobile’s steering wheel. The angle of rotation is the input to the
automobile. The machine (i.e., the automobile) converts this angle into a
change in the vehicle’s path. The human perceives this change and then
updates the earlier decision/action regarding the rotation of the steering
wheel, and so on.

In terms of representing this problem, one could employ various engi-
neering tools to model how steering wheel inputs affect automobile outputs.
However, this book is not concerned with this aspect of modeling. Instead,
we are concerned with how the path that an automobile is following affects
the steering wheel rotations that the human produces. Thus, throughout this
book, we shall assume that a model of the machine is available and our
discussions-will be aimed at developing a model of the human. Of course,
as we shall later discuss at some length, the human’s behavior is highly
influenced by the particular machine involved in the interdction; thus one
cannot view the models of human and machine as independent of each
other.

Succinctly then, we can view problem representation as the process of
developing a relationship between the inputs and outputs of the human. As
discussions throughout this book will indicate, the appropriate type of
representation depends on a variety of factors. In Chapter 7, we shall
consider the problem domains appropriate to the various representation
methodologies discussed in this book.

Once a representation of the problem has been formulated, the next step
of the modeling process is calculation of performance. Consider the
following example. Suppose the input to the human x results in the human
producing output y = g + bx. Further, assume that the machine trans-
forms its input y into output x = ¢ + dy. Finally, the performance measure
might be x“ where the goal is minimization of x%. Calculation of perform-
ance involves determining the simultaneous solution of y = a + bx and
x = ¢ + dy and then calculating X

Although this very oversimplified example illustrates the concept of
calculating performance, it by no means depicts the usual level of difficulty
of such calculations. In fact, it is not unusual to be unable to solve
analytically the set of equations embodying the models of human and
machine. In such situations, one has to resort to either approximations or
simulation.

Simulation solution involves developing an analog and/or digital com-
puter program that emulates the set of equations of interest and allows one
to calculate various properties of the resulting solutions. Since human-
machine systems problems frequently have probabilistic aspects, this calcu-
lation is often of a statistical nature. Thus, one must replicate the simulation
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solutions many t:mes to obtain a sufficient number of samples of perform-
ance measures to be able to estimate average performance within reasona-
ble confidence limits. Although simulation approaches to calculating per-
formances certainly work, one usually attempts to avoid simulation unless
analytical solutions, perhaps with appropriate approximations, are not
possible. This is simply due to the fact that simulation solutions are
typically morg time-consuming and costly than analytical solutions. Never-
theless, as will be discussed at various points throughout later chapterse
many realistic and important problems have to be solved using simulation.

The next step in the modeling process involves experimental validation
of the model. There are two parts to this process. First, since most (but not
all) models typically have several free parameters, usually reflecting some
behavioral assumptions (e.g., reaction time), one may have to experimental-
ly determine the values of these parameters. This involves adjusting the
parameters until the performance of the model matches actual system
performance as closely as possible. )

There are many misconceptions about this performance-matching proc-
ess. Some researchers (i.e., nonmodelers) have claimed that with two or
three free parameters they can make model performance match virtually
any empirical results. This is patently absurd. For example, if the actual
system is such that y = x* and one chooses to use y = a + bx as a model,
no amount of manipulation of the constants a and b is going to match this
model to the real system over a reasonable range of x. The important point
to note here is that the structure of the model will preclude certain types of
behavior regardless of the values of its parameters. Thus, one should be
careful in deriving a model’s structure and, for the most part, not apologize
about having to estimate the model’s parameters.

On the other hand, some researchers (i.e., modelers) tend to let parame-
terization get out of hand. Occasionally someone will use 10, 15, or 20 free
parameters to match a single performance measure (e.g., rms error). This
clearly presents methodological problems. However, overparameterization
also presents difficulties in terms of interpreting the meaning of parameter
variations. This subverts some of the purposes of modeling, namely,
providing succinct explanations of data and providing assistance in design-
Ing experiments.

The second part of the experimentation process involves using the model
to predict performance and then empirically determining how close the
predictions are to actual occurrences. Of course, if the problem of interest

. has probabilistic aspects, then one does not expect a model’s predictions to
be perfect. The essential question is this: Does the model provide more
predictive ability than one could obtain by simply using the mean of past
performance as a predictor of future performance? The answer to this
question can be quantified in terms of the percent of the variation about the
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mean that is explained by the model. One useful rule of thumb here is the
following: The percent of the variance that a model will be able to explain
(predict) is inversely related to the robustness of the human-machine
system environment being studied. Thus, for example, one can probably
model variations of detector time in a pattern recognition task to a greater
extent than one can model variations of task time in problem solving
situations (Rouse and Rouse 1979).

The results of experimentation lead to the comparison step of the
modeling process. Although it is difficult to separate experimentation from
comparison, as evidenced by the issues discussed in the last few paragraphs,
we nevertheless want to single out some very important aspects of the
comparison process. First of all, the distinction between behavior and
performance should be noted. Within this book, the term “behavior” will
be used to refer to what the human does whereas the term “performance”
will refer to how well it is done. In a tracking task, for example, the human’s
behavior is the specific time history of control movements produced
whereas the performance is the rms tracking error that results.

Since a variety of patterns of behavior might result in the same
performance, it is very much easier to develop models to predict perform-
ance than it is to develop models to predict behavior. For many engineering
applications, performance predictions are all that is necessary. When such
is the case, then comparisons of the performance of the model with
empirical measurements of performance are sufficient to validate the model.
However, such validation does not allow one to infer that the model’s
behavior matches human behavior. If one is interested in behavior as well
as performance, then one should make validating comparisons between the
behavior of the model and the behavior of the human. Although this
principle does not have to be followed religiously, it should not be
flagrantly violated.

Since a model that can accurately predict behavior will also be able to
accurately predict performance (but not vice versa), a behavioral model is
much “stronger” in the sense that it more completely describes the human
as he performs the task of interest. This point has been convincingly argued
by Gregg and Simon (1967). They contrast process (behavioral) models and
statistical (performance) models and defend in detail the notions briefly
outlined in these last two paragraphs.

Besides deciding whether comparisons will be based on behavior or
performance, one also must choose the range over which validation is to be
attempted. Quite often the particular application motivating the modeling
effort will dictate the range over which one should vary the conditions for
which the model is being tested. One should choose the range of testing
conditions so that later predictions will be interpolations rather than
extrapolations. If unforeseen situations later cause one to have to use
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extrapolations, then one is much better off if a behavioral model is
available, especially if one is only interested in performance predictions for
the extrapolated conditions. The reason for this is obvious. The more fine-
grained the validation process is, the more reasonable extrapolations will
be, particularly if these extrapolations are not as fine-grained as the
validation. )

Summarizing our discussions of the modeling process thus far, the
following steps of the process are important to note:

Definition
Representation
Calculation
Experimentation
Comparison
Iteration

S e S

With the exception of iteration, we have discussed all of these steps of the
modeling process. The iteration step has been added at this point to
emphasize that the modeling process is really not as straightforward as this
introductory chapter may have led one~to- belteve. One typically goes
through a seemifigly never-ending process of refinement whereby model
inadequacies are eliminated and the range of a model validity is extended.
Occasionally as one is trying to eliminate inadequacies and extend the
range of validity, one finds that a whole new representation methodology is
needed. Several transitions of this type will be considered throughout this
book. In general, iteration results in the modeling process never terminat-
ing, basically because the modeling process is synonymous with the process
of knowledge acquisition and organization whose inherent goal is growth
and change.

The Use of Analogies

One of the most powerful problem solving methods of science and
technology is the use of analogies. Basically, this involves viewing a new
problem as if it were an old problem for which one is likely to know the
solution or, at least, possess considerable insight. For example, one might
view the central nervous system as an electrical circuit and then employ
various circuit analysis methods in an attempt to understand the central
nervous system. This analogy might prove quite satisfactory until one must
deal with the chemical nature of central nervous system activity. Then, the
electrical circuit analogy might have to be modified or perhaps replaced.
The iterative process of adopting, modifying, and replacing analogies is
central to science and engineering. When an analogy within a particular
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area of research gathers a sufficient number of adherents, it is often termed
a paradigm (Kuhn 1962). The emergence of paradigms is a focal point of
study for those who research the history of science and engineering. One
especially important notion that can be gleaned from this research is that
the emergence, and especially the maintenance, of a paradigm can usually
partially be attributed to a social consensus among researchers rather than
to purely technical considerations (Ziman 1968). This phenomenon results
in tremendous inertia in the sense that the need for a new paradigm often

has to be overwheiming before an old paradigm is replaced.
This book considers a variety of analogies that are of use when analyzing

human-machine systems. Of all the analogies that we will consider, perhaps
the only one that has achieved the status of a paradigm is the servomecha-
nism analogy. The basic idea is that the human acts as an error-nulling
device (e.g., a thermostat) when driving an automobile, flying an airplane,
or doing just about anything. Because of Norbert Wiener’s efforts in this
area (Wiener 1948), the servomechanism analogy is often refeired to as the
cybernetic paradigm. However, as we shall discuss in Chapter 7, it is
perhaps unfortunate that cybernetics often is viewed so narrowly.

The servomechanism analogy or paradigm has proven to be quite useful
because of the great number of control theory methods available for
analysis of systems that can be represented as servomechanisms. Chapter 3,
in particular, is devoted to discussing some of these methods. However,
while the servomechanism paradigm is still predominant in the human-
machine systems area, several new analogies have emerged that are also
quite useful.

The need for new analogies has been precipitated by the increasing use
of automation. The increasing use of computers to perform control tasks
has resuited in the human’s role becoming more like that of a monitor and
supervisor. In such a role, the human can have responsibility for more tasks.
Furthermore, as a backup for the computer, the human has to help in
detection and diagnosis of system failures. Viewing the human as a
monitor, supervisor, and diagnostician leads to three new analogies: ideal
observer, time-shared computer, and logical problem solver. The ideal
observer analogy, discussed in Chapter 2, is not really that new. However,
the recent emphasis on the human’s role as a monitor has increased the
potential usefulness of this analogy. The usefulness of the time-shared
computer analogy, considered in Chapter 4, is related to the desire to
represent the human’s abilities to supervise multiple tasks. This analogy has
continually been embellished as the technology of time-shared computing
has developed. The logical problem solver analogy, examined in Chapter 5,
is relatively new. Its development reflects a recognition of the importance
of understanding the human’s role in systems where the ultimate responsi-
bility for system failure is the human’s.



