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Preface

There are probably few people who do not dream of the good old times, when do-
ing science often meant fascination, excitement, even adventure. In our time, do-
ing science involves often technology and, perhaps, even business. But there are
still niches where curiosity and fascination have their place. The subject of this
book, technological as its title may sound, is one of the fortunate examples. It will
report on lasers generating the coldest places in the Universe, and on table top laser
microtools which can produce a heat "inferno™ as it prevails in the interior of the
Sun, or simulate, for specific plant cells, microgravity of the space around our plan-
et Earth. There will be some real surprises for the reader. The applications range
from basic studies of the driving forces of cell division (and thus life) via genetic
modification of cells (for example. for plant breeding) to medical applications such
as blood cell analysis and finally in vitro fertilization.

What are these instruments: laser microbeams and optical tweezers? Both are
lasers coupled with a fluorescence microscope. The laser microbeam uses a pulsed
ultraviolet laser. Light is focused, as well as possible, in space and time, in order
to obtain extremely high light intensities —high enough to generate. for a very short
instant, extremely hot spots which can be used to cut, fuse or perforate biological
material. Laser microbeams have evolved from microbeams with classical light
sources which have been used in biology since the beginning of this century. Op-
tical tweezers. on the other hand, use infrared lasers of moderate intensity and in-
volve only little interaction with biological tissue. Their main purpose is to hold
microscopic particles solely with the force of light or to measure microscopic forces
with incredible precision. In some sense optical tweezers are an extended version
of laser cooling of atoms and molecules.

Due to their different working principles, laser microbeams and optical tweez-
ers so far have often been treated separately in the scientific literature. Reports on
both microtools in combination are rare. Thus, this book is an attempt to bridge this
gap and to use the synergy ot both techniques. Interestingly. they are probably the
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only tools which allow one to work in the interiors of unopened objects — a truly
exciting aspect.

This interdisciplinary book is intended to bridge a second gap: the gap between
those who are new to the field (or who just want to learn more about it out of cu-
riosity) and the specialists at the cutting edge of this field of research. Hopefully,
the wide range of subjects presented will excite the interest of readers from many
branches of science: physicists or chemists who want to learn how the dramatic ef-
fects of these tools can be used in biology, and biologists and physicians, who want
to learn how the physical effects are generated. Certainly, the readers of this book
will be of very different backgrounds. Therefore it is written on different levels.
The main text should give the reader an overview. Details, hard stuff and data are
presented in boxes, which the reader will wish or need to study in detail only if he
or she wants a deeper understanding of the subject. For non-biologists, three sec-
tions called «intermezzos» are inserted which give some basic biological or bio-
medical information. Certainly these sections can not replace good textbooks, but
they may give at least a foretaste of the biology and biomedicine described in sub-
sequent chapters and sections. Finally, the information in the Appendix seeks to re-
duce the number of textbooks required by those who really want to build their own
laser microbeam and optical tweezers.

I would like to thank all colleagues who have developed the techniques and have
ingeniously used them to solve important questions of science. I hope that I have
acknowledged their work properly by citing representative publications. Particu-
larly I would like to thank Alla Margolina Litvin and Steve Block for numerous
constructive critical comments.

Jena, I August 1998 Karl Otto Greulich
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Introduction: The history of using light as a
working tool

Certainly the earliest pioneers of optics realized that sunlight focused through a
piece of curved glass can be used to perforate or slice thin pieces of wood or sim-
ilar materials. Since then it has been known that light of a high power density can
be used much like mechanical tools such as knives or scissors. At the beginning of
this century, microscopists learned that a powerful conventional light source fo-
cused into a microscope could be used to manipulate biological objects. A con-
ventional light source could be focused down to a spot size of a few micrometers.
It was immediately clear that the “Strahlenstich™, as it was called, was a tool for
biologists. Probably the first work using highly focused light to manipulate bio-
logical material was that of S. Tschachotin (1912). Fig. | is a facsimile of the first
page of Tschachotin’ s paper.

Die mikroskopische Strahlenstichmethode,
cine Zelloperationsmethode.
Von Dr. Sergei Tschachotin.
(Vorldufige Mitteilung.)
(Aus der parasitologischen Abteiluog (Vorstand: Pmf. Dr. Th. v. Wasielewski]
des Institues fiie Krebsforschung in Heidelberg, Direktor: Prof. Dr. V. Czernv,

Exz, und aus dem pharmakologischen Institut der Uuniversitit Gevua. Vorstaod:
Prof. Dr. A. Benedicenti)

Manche Griinde hewegen mich, einer Serie von Arbeiten. die
noch nicht ganz abgeschlossen sind, diese vorliufige Mittetlung
voranzuschicken.

Den AnstoB zu den zu erwihnenden Untersuchungen gab die
sich allmahlich immer dringender einstellende Uberzeugung, dass
wir unsere erfolgreiche experimentelle Methodik, die in den letzten
Jahrzehnten zu einem ungeahnten Fortschritt aul allen Gebielen
der biolugischen Forschung gefihrt hat. dimensional verfeinern und
auf die kleinsten materiellen Einheiten des Lebens. auf die Zelle
als Individuum, auszudehoen versuchen miissten.

Wie wir beim Experiment in groferem Mabstabe praktiscl:-
methodisch einen eingreifenden und einen registrierenden, beobach-
tenden Teil unterscheiden, so wiirde auch beim Mikroexperiment
unser Augenmerk auf die Ausarbeitung erstens der Mikrolisicns-
und zweitens der Mikroobhservationstechnik zu richten sem. Letatere
kann bekanntlich subjektiv und objektiv (z. B. Mikrophotographie

Fig. 1: First page of Tschachotin’s paper on the «Strahlenstich» (which, to-
day, could be translated as “microbeam”
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Fig. 2: LMA 1, the first commercially available microbeam apparatus (Foto:
V. Meinel and M. Ludwig, Jena).

In spite of its age. the “Strahlenstich™ is far from being old-fashioned. Whenever
accuracies of a few micrometers and moderate power densities are sufficient the
classical microbeam is as useful as the laser microbeam.

The latter. using a red ruby laser, became available in 1962 (Bessis et al., 1962),
i.e. less than two years after the laser had been invented by Maiman (1960). In 1965,
during an industry fair in Leipzig, Carl Zeiss, Jena, presented the LMA| (laser mi-
crobeam analyzer) based on a ruby laser with microsecond pulses of a few milli-
Joules each. Its spot size was approximately 2 micrometers.

In the early years, several groups had sporadically tried using the laser mi-
crobeam but then moved on to other topics. Since 1969 on, there has been a conti-
nuity in the use of laser microbeams. Michael Berns of the University of Califor-
nia at Irvine, published first papers on the use of laser microbeams in cell biology
(Berns et al., 1969). He has continued this work with ever-increasing sophistica-
tion. A number of chapters of this book will be devoted to his studies.

Before the laser microbeam came of age, its application was split into two dif-
ferent directions. One direction was governed by work performed by Berns and his
group (see, for example, Berns, 1974 or Berns et al., 1981). The second direction
developed into molecular analysis: Laser ablation was combined with mass spec-
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trometry and finally developed into laser mass analysis (LAMMA) and matrix as-
sisted laser desorption (MALDI) (Hillenkamp et al. 1975). A variant of this is flu-
orescence recovery after photobleaching (FRAP, Peters, 1986). Here, fluorescent
molecules on the surface of cells are bleached by highly focused laser pulses and
the flow of molecules on the cell membrane is observed via fluorescence recovery.
Today, the field of applications of laser microablation is so wide that not all aspects
can be treated in a text the size of the present book. Therefore, reluctantly, its scope
has to be limited, and LAMMA, MALDI and FRAP will not be covered in spite of
the enormous impact they have.

The development of the optical tweezers is uniquely connected to the work of
Arthur Ashkin from the AT&T Bell Labs in Holmdel, N J. (Ashkin, 1970). In the
early seventies it was realized that the speed of an atom or a molecule can be re-
duced when a laser of a suitable color is directed into the direction of motion of the
molecule. This phenomenon has been termed laser cooling since the speed of a mol-
ecule is related to its temperature, and it gained the 1997 Nobel prize in physics for
S. Chu, W. Phillips and C. Cohen Tannoudji. Later it was shown that particles of
the size of one micrometer, such as polystyrene beads, could also be manipulated
by laser light. In that experiment, a focused laser was required and the particles
were balanced on a focused laser beam, similar to a ping pong ball balanced on a
jet of water. A significant step was the use of gradient forces which. in contrast to
light pressure. pull dielectric particles into the focus of a laser, i.e. they can also be
moved against the direction light propagation. The set up for such an experiment
was named “single beam optical trap™ or “optical tweezers™ (Ashkin et al., 1986).
Even today, both expressions are used in the scientific community and will be used
interchangeably throughout this book.

Until 1987 the single beam gradient trap was used successtully only with non-
living material. Then, Ashkin’s group published two papers changing the field dra-
matically. The breakthrough for the use of the optical trap in biology came when
viruses and bacteria were first trapped with a green argon ion laser (Ashkin and
Dziedzic, 1987) and subsequently an intfrared NdYAG laser was used for manipu-
lation of whole cells (Ashkin et al., 1987). This change from green to infrared was
an important step since infrared light with a wavelength of about one micrometer
is only weakly absorbed by biological material. Fragile mammalian cells survived
this laser treatment. This was the beginning of optical trapping in cell biology. The
end of the decade was the time of pioneers in optical trapping, most notably among
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them were the groups of Todor Buican (Buican 1987) and Steven Block (Block
1989) and of course, Arthur Ashkin.

In 1989 the mierobeam field and the optical trapping field were merged by the
first combination of laser microbeams and optical tweezers (Greulich et al., 1989,
Greulich et al 1990). From then on complete micromanipulation by light was pos-
sible with one single piece of equipment. The last decade of this millenium is now
witnessing a dramatic expansion of the field. Micromanipulation by light may be
on the way to becoming a standard tool for many fields of science.

Box 1: Milestones in the development of laser microbeams and optical tweezers

1912 S. Tschachotin publishes the first work on the
microbeam using a thermal light source

1917 A. Einstein develops the theoretical foundations
of lasers

1961 M. Maiman presents the first laser

1962 Bessis present the first laser microbeam

1969 Berns develops microbeams into a standard

tool for many fields of biology

1968/70 Letokhov and Ashkin publish the principles of
using light pressure to manipulate atoms,
molecules and microscopic particles

1986 The single beam gradient trap (optical tweezers )

1987 Ashkin's papers on the use of infrared gradient
traps with living objects

1989 First quantitative force measurements with optical
tweezers by the groups of Ashkin and Block

1989 Combination of the laser microbeam and the
optical tweezers

1989-now Complete micromanipulation by light

1997 Physics Nobel Prize for cooling atoms and
molecules by light
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