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FOREWORD

The book is a concise introduction to the dispersion decay and its applications to the
scattering and spectral theory for the Schrodinger, Klein-Gordon, and wave equations.
We expose the Agmon, Jensen, and Kato results on analytical properties of the
resolvent in weighted Sobolev norms and applications to the spectral and scattering
theory. The course is intended for readers who have a nodding acquaintance with
the Fourier transform of distributions, the Sobolev embedding theorems, and the
Fredholm Theorem.
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PREFACE

We present the extended lecture notes of the course delivered by one of the authors
in the Faculty of Mathematics of Vienna University in the spring 2009 for graduate
students IV-V years.

Our aim is to give an introduction to spectral methods for the Schrodinger and
Klein-Gordon equations with applications to a dispersion time-decay and scattering
theory. This method relies on analytical properties of the resolvent: high energy decay
and low energy asymptotics of the resolvent, and the limiting absorption principle (a
smoothness of the resolvent in the continuous spectrum).

This strategy in the dispersion time-decay was introduced by Vainberg for general
hyperbolic equations with constant coefficients outside a compact region, and initial
functions with compact support. The approach was extended by Agmon, Jensen,
Kato, Murata and others to the Schrodinger equation with generic potentials of
algebraic decay, and initial functions from the weighted Sobolev spaces. These
results play a crucial role in the study of asymptotic stability of solutions to nonlinear
Schrodinger equations, see [7, 8, 11, 64, 65, 80, 81].

We present the Agmon, Jensen, and Kato results for the first time in the textbook
literature. Then we apply them to a new dynamical justification of the scattering
cross section via the limiting amplitude principle and convergence of the “spherical
limit amplitudes” to the “plane limit amplitudes”. We also present an extension of the
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xvi PREFACE

methods and results to the Klein-Gordon and wave equations obtained in [45, 48, 51].
Recently the results were successfully applied for proving asymptotic stability for
the kinks of relativistic invariant nonlinear Ginzburg-Landau equations [43, 44].

The course is intended for readers who have a nodding acquaintance with the
Fourier transform of distributions, the Sobolev embedding theorems, and the Fred-
holm Theorem.

We do not touch alternative approaches to the dispersion decay and scatter-
ing (Birman-Kato theory [70], Strichartz estimates [38], Mourre estimates [26],
Hunziker-Sigal method of minimal escape velocity [28, 29], and other) not to over-
burden the exposition.

In Sections 1 and 2 we collect basic concepts and facts which we need: the Fourier
transform of distributions, the Sobolev embedding theorems, the Fredholm Theorem,
and basic technique of pseudodifferential operators (everything is covered, e.g., by
[77] or [40]). In Sections 3-15 we establish basic properties of the Schrodinger
equation. In the central sections 1622 we present the Agmon-Jensen-Kato spectral
theory of the dispersion decay in the weighted Sobolev norms. In the remaining
sections 23—41 we apply the dispersion decay to scattering and spectral theories, to
a justification of scattering cross section, and to a weighted energy decay for 3D
Klein-Gordon and wave equations with a potential.

One of the cornerstones of the Agmon-Jensen-Kato approach is the high energy
decay of the resolvent in the weighted Sobolev norms, which was stated by Agmon
in [1, (A.2")]. We give a complete proof explaining all related details: the Sobolev
Trace Theorem, the Holder continuity of the traces, the Sokhotsky-Plemelj formula,
etc. The next cornerstones are Kato’s theorem on the absence of embedded eigen-
values and Agmon’s theorem on the decay of the eigenfunctions. We give complete
streamlined proofs.

A. 1. KOMECH AND E. A. KOPYLOVA

Moscow-Vienna
January, 2012
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INTRODUCTION

Dispersion decay and scattering The main subject of our book is the study of wave
radiation and scattering for solutions to the Schrodinger and Klein-Gordon equations
with a decaying potential

iW(z,t) = H(z,t) == —A¢(z,t) + V(z)p(z,t), z€R®, (0.1
P(z,t) = Ap(z, t) — m*Y(z,t) — V(z)p(z,t), z€R®, (0.2)

which are the basic wave equations of quantum mechanics, introduced in 1925-
1926. The key peculiarity of the wave processes is the energy propagation and
energy radiation to infinity known since Huygens’ “Treatise on light” (1678).

This radiation is demonstrated by the dispersion time decay which is a fundamen-
tal property of solutions to general linear hyperbolic partial differential equations.
The decay was first justified by Kirchhoff about 1882 for solutions to the acoustic
equation, which is the Klein-Gordon equation (0.2) with m = 0 and V(z) = 0.
Namely, Kirchhoff discovered the famous formula (39.7), (39.8) which, in particular,
implies the strong Huygens principle for the acoustic equation:

Y(z,t) =0 for |z| < |t| — Ro and for |z| > |t| + Ro 0.3)
if _
¥(z,0) =0, ¥(z,0) =0 for |z| > Rpo. 0.4)
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XX INTRODUCTION

In particular, (0.3) implies
Y(xz,t) =0 for |z|] <R and |t| > Ro+ R 0.5)

for any R > 0. This wave divergence was widely recognized in theoretical physics in
the nineteenth and twentieth centuries. In particular, it was one of the key inspirations
for Bohr’s theory of radiation induced by the quantum transitions.

However, a mathematical justification of this phenomenon was discovered only
after 1960 by Lax, Morawetz, Phillips, and Vainberg for wave and Klein-Gordon
equations and extended by Ginibre and Velo, Rauch, and others for the Schrodinger
equation in the theory of local energy decay:

/ [v(z, t)|?dz — 0, |t| = oo, 0.6)
|z|<R

for any R > 0 under condition of type (0.4) on initial data and a suitable condition
on the potential V' (z).

In 1979, Jensen and Kato proved a stronger decay in the weighted Sobolev norms
for the Schrodinger equation (0.1). In particular, for the free Schrodinger equation
with V(z) =0,

(=)~ Y (z, 1)l >0, [t] o0, (0.7

for a sufficiently large o > 0 if
[{z)7%(2,0)|| < o0, (0.8)
where (z) = (1 + |z|)'/? and | - || stands for the norm in the Hilbert space £2? :=

L%(R3). Obviously, condition (0.8) is an analog of (0.4), while the decay (0.7)
generalizes (0.5) and (0.6). The approach relies on the Agmon analytical theory
of the resolvent [1]. Murata extended these methods and results to more general
equations of the Schrodinger type [62]. Recently the decay in the weighted Sobolev
norms was extended to the wave and Klein-Gordon equations [45]-[51].

The decay (0.7) obviously does not hold for solutions of type v(z)e** to (0.1)
with real w if they exist. In this case HyY = w, i.e., ¥(z) is the eigenfunction
of H. However, it turns out that the decay holds for solutions with initial states
¥(z,0) € X., where X, is the subspace of functions from £2 which are orthogonal
to all eigenfunctions.

This decay allows to clarify significantly the structure of the trajectories. Namely,
the decay implies that the term V ()¢ (z,t) in (0.1) dies down as || — oo, and
hence the equation reduces to the free equation with V' (z) = 0. Respectively, one
could expect that ¢(z, t) converges for large times to the corresponding solutions of
the free Schrodinger equation:

Y(z,t) ~ ¢+ (z,t), t— +o0o. 0.9)

Of course, ¢4 (z,t) = ¢_(z,t) if V(z) = 0. Therefore, the difference between
¢+ (x,t) reflects the properties of the potential V(z). The map S : ¢_(-,0) —
¢+(+,0) is called the scattering operator.
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The decay (0.7) for ¢)(z,0) € X, allows to prove asymptotic completeness in the
scattering, which means that S : £2 — £2 is a unitary operator. The decay also
allows to give a dynamical justification for the guantum scattering cross section [42].

Note that the decay in L2(R?) for solutions to the Schrodinger and Klein-Gordon
equations does not hold due to the conservation of the corresponding charge @ and
energy E: for the Schrodinger equation

Q= / (e, t)?dz, E:= [ ¥(z,t)H(z,t)dz, (0.10)
R3

R3

and for the Klein-Gordon equation

Q:=Im Y(z, t)Y(z, t)dz,

R3
E:= /}Ra[w}(:c, )2 + o(z, t) (H + m?)(z, t)]dz . (0.11)

Contents The main goal of the present lectures is to give an introduction to the
dispersion decay in weighted norms and its applications. We assume that the potential
V(z) is a real-valued continuous function which decays at infinity:

V(z) € C(R%,R), sup(z)?|V(z)| < oo, (0.12)
Tz€R3

where 8 > 0 is sufficiently large.

In Chapter 1 we recall basic concepts of tempered distribution theory, formulas
for the Fourier transform, and functional spaces that we will use. We also calculate
an integral representation for the solution to the free Schrodinger equation (0.1)
corresponding to V' = 0.

In Chapter 2 we prove well-posedness of the initial problem for the Schrodinger
equation (0.1): for initial data +/(0) € £?, the solution exists and is unique, and the
corresponding dynamical group U (t) : 1(0) — 1(¢) is unitary in £2. For the proof
we apply the contraction mapping principle to the integral Duhamel representation
which is equivalent to (0.1). The total charge and energy (0.10) are conserved.

In Chapter 3 we calculate an integral representation for solutions to the free station-
ary Schrodinger equation corresponding to V' (z) = 0. Further, we prove analyticity
and some bounds for the resolvent R(w) := (H — w) ™! of the Schrédinger operator
(0.1). The resolvent is analytic for w € C \ [Vp, 00), where V = mingegr V (z).

In Chapter 4 we establish a spectral representation of type (0.15) for solutions
to (0.1) and prove that the resolvent R(w) admits the meromorphic continuation
to w € [Vp,0) with the poles at the discrete set of points w; € [Vp,0) which are
eigenvalues of H with the corresponding eigenfunctions v; € £2:

Hip; = wjh; . (0.13)
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The subspace X of the discrete spectrum, generated by the eigenfunctions, is finite
dimensional for generic potentials V. In conclusion we prove the famous Kato
Theorem on the absence of the positive embedded eigenvalues.

In Chapters 5-7 we establish the asymptotic behavior of the resolvent R(w) for
small and large w [see (0.28) and (0.29) below] and establish the limiting absorption
principle

R(r+ie) > R(r+i0), -0+, r>0, 0.14)
in an appropriate operator norm. We assume spectral condition (19.9), which means
that the point A = 0 is neither an eigenvalue nor a resonance for the Schrodinger

operator H. The condition holds for generic potentials. These properties allow to
justify the spectral representation for solutions to (0.1),

N 0o
P(t) =Ecjzp,-e—iwﬁ+% / et [R(w+iO)—R(w—z’0)]z/)(O)dw. (0.15)
1 ]

e

The last integral represents the solutions (z,t) with initial states ¥ (z,0) € X,
where X is the space of the continuous spectrum of H. For these solutions we prove
the dispersion decay

I(z) =% (z, )|l < Clo)(t)~*2I|(z) (2, 0)l|, o >5/2, (0.16)

established by Jensen and Kato [35].

In Chapter 8 we deduce (0.9) as a corollary of (0.16). More precisely, for i)(z,0) €
X

P(x,t) = Pi(z,t) + re(z,t), 0.17)

where 14 (z, t) are the corresponding solutions to the free Schrodinger equation and
the remainder decays in the £2-norm:

lr+(, 0] — O, t— too. (0.18)

Each wave operator
Wi . ’w(.’L', 0) — lli:h(.’l,‘,O) 0.19)

is an isometry of X onto L2, so the scattering operator
S=W,W>':9_(z,0) = ¢ (z,0) (0.20)

is unitary in £2 (see Fig. 1). We apply the wave operators for the spectral resolution
of the Schrodinger operator and for the representation of the scattering operator S
via the scattering matrix.

Note that our proof of the asymptotic completeness relies on bound (0.12) with
B > 3 and the spectral condition (19.9), though the results hold under less restrictive
conditions, see, e.g., [70].
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t=+ o0

Y. (1)

Y-

t=-o00

Figure 1.1 Scattering and wave operators for ¥(0) € X..

In Chapter 9 we apply time decay (0.16) to adynamical justification of the quantum
differential cross section. We identify the incident wave with a radiation of a localized
harmonic source in the Schrodinger equation:

iW(x,t) = H(z,t) — pgl@) e~ B, H := —%A +V(), 021

where Ey = k?/2 for k € R3, and py(z) := |g|p(x — q) is the form factor of the
source. We assume that the discrete spectrum of H is empty, ||(z)° p(z)|| < oo, and
[{z)o°2(x,0)|| < oo with some o', 00 > 5/2. We also assume the Wiener condition

A(|k|6) = / ks o) de 20,  OER®, 0|=1.  (022)

The first step is the proof of the limiting amplitude principle, i.e., the long time
asymptotics .
Y(x,t) ~ By(z)e Ext | t—o00. (0.23)

The main result is the convergence of the spherical limit amplitudes B, to the
corresponding plane limit amplitudes when |q| — co. This convergence justifies the
(commonly recognized) expression (25.6) for the differential cross section.

In Chapters 10 and 11 we expose our recent results [45, 48] extending the Ag-
mon-Jensen-Kato theory to the Klein-Gordon and the wave equation.

Methods It is well known since Laplace and Heaviside that the long time asymptotics
of the solutions to differential equations depend on the smoothness and analyticity of
the Fourier-Laplace transform.

The ideas were developed by Vainberg to prove local energy decay (0.6) for general
hyperbolic partial differential equations with constant coefficients outside a compact
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region, and initial functions with compact support [85]-[89]. The Vainberg strategy
relies on analytical properties of the resolvent: high energy decay and low energy
asymptotics and the limiting absorption principle (a smoothness of the resolvent in
the continuous spectrum).

The approach was extended by Jensen, Kato, Murata, and others to prove weighted
energy decay (0.7) for the Schrodinger equation with generic potentials of algebraic
decay and initial functions from the weighted Sobolev spaces with norms (0.8) (see
[1, 35, 36, 62]).

For the Schrodinger equation the Fourier-Laplace transform of the solution is
expressed in terms of the resolvent:

P(w) := /0 ~ e“ty(t)dt = —iR(w)¥(0), Imw >0, (0.24)

where the integral converges in £2 due to the “charge conservation”
lw@)|| =const , teR. (0.25)

The resolvent R(w) is an analytic operator function. This follows from the Fourier
transform in the case V = 0 and from the Fredholm Theorem for V' # 0. Spectral
representation (0.15) is deduced from the Fourier-Laplace inversion formula

b(t) =

—— —twt
= 507 L€ R@HO)d, (0.26)

where I is an appropriate contour in the complex plane.

Limiting absorption principle (0.14) in the case V' = 0 follows by Agmon’s
bounds [see (0.28) below] and duality arguments. In the case V' # 0 the proof relies
on Kato’s theorem on the absence of positive embedded eigenvalues and Agmon’s
theorem on the decay of the eigenfunctions.

Dispersion decay (0.16) is the central point of our lectures. Its proof relies on
integral representation (0.15). For 4(0) € X, representation (0.15) becomes

Y(t) = /0 ” gkt [R(w +i0) — R(w — iO)]w(O) dw . 0.27)

= omi

This oscillatory integral representation implies time decay (0.16) by the following
asymptotics of the resolvent in appropriate operator norms.
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A. High energy decay of the resolvent and its derivatives:
R® () = O(|lw|~ ™), |w| = 00; w € C\ [0,00) . (0.28)
B. Low energy asymptotics at the edge point w = 0 of the continuous spectrum:
R®(w) = O(Jw|?*), w—0;weC\][0,00). (0.29)

The last asymptotics hold under spectral condition (19.9) for the Schrodinger opera-
tor.

Asymptotics A and B with k = 0, 1, 2 imply dispersion decay (0.16) of the oscillatory
integral (0.27) by double partial integration for large w and by the Jensen-Kato-Zyg-
mund lemma (Lemma 22.5) on “one-and-half partial integration” for small w.

Asymptotic completeness (0.17), (0.18) for initial functions ¥ (z,0) € X. with
the finite norm (0.8) follows from dispersion decay (0.16) by the classical Cook
argument [70]. Namely, the Duhamel representation gives

I

W) = Uo(®)p(0)—i / Uo(t — T)Vip(r)dr
0

Uo(t)[(0) - z‘]ouo(—r)vw(r>dv]
0

oo

4 / Us(t — )Ve(r)dr , (0.30)

t

where Uy (t) is the dynamical group of the free Schrodinger equation. The integral
in the middle line represents 1 (z, t) from (0.17). It converges in £2 since Up(—7)
is the unitary operator, while

Vel < Cli{z)~7p(z, 7l < Clo)(r) = |{2) (=, 0)| (0.31)

by (0.16). The same arguments imply the decay in L2 of the last integral in (0.30)
which represents the remainder r (z,t) from (0.17). Hence, (0.17), (0.18) follow
fort — oo.

Limiting amplitude principle (0.23) follows immediately from dispersion decay
(0.16) since

t
W(z,t) = U(t)o + z/ U(t — s)pge *Freds (0.32)
0

by the Duhamel representation. Indeed, the first term on the right hand side converges
to zero by (0.16) since the discrete spectrum of H is empty. On the other hand, the
second term can be written as

t
ie_iE"t/ U(7)pge'F*ds , (0.33)
0
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where the integrand decays like (1) ~3/2 by (0.16) since ||(z)° p(z)|| < occ.

The proof of the convergence of the spherical limit amplitudes B, to the plane
limit amplitudes relies on i) uniform bounds for the spherical amplitudes and the
corresponding compactness arguments and ii) the Ikebe uniqueness theorem for the
Lippmann-Schwinger equation. We obtain the uniform bounds from the Agmon-
Jensen-Kato analytic theory of the resolvent and the long range asymptotics for the
Coulombic potentials which are due to Povzner [67], Ikebe [30], and Berezin and
Shubin [4].

Let us stress that the limiting amplitude principle (0.23) is a fundamental pecu-
liarity of the hyperbolic partial differential equations (PDEs) which relies on the
dispersion decay, i.e., on the energy radiation to infinity.

The extension of the Agmon-Jensen-Kato approach to the Klein-Gordon and wave
equations is not straightforward, since the high energy behavior of the corresponding
resolvents is quite different from the Schrodinger case (0.28). The difference is
related to the distinct nature of wave propagation for relativistic and nonrelativistic
equations.

First we prove the long time decay of solutions in weighted energy norms for the
corresponding free equations and then extend the decay to the perturbed equations.
The proof for the free equations relies on the Strong Huygens Principle in the case
of the wave equation and on the corresponding “soft version” of this principle in the
case of the Klein-Gordon equation.

The extension to the perturbed equations relies on the Born series and convolution
representations.
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