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Preface

The present book of the Springer Series in Biophysics deals with some tech-
niques that are being implemented nowadays. One of the motors that have driven
the biosciences, like daily life, has been the technological boost produced by the
advancement of microprocessor technology. A whole array of possibilities have
been opened to develop the classical techniques that were used some years ago.

Abrahams and coworkers contribute with a chapter on protein nanocrystal-
lography which deals with obtaining protein crystals in small, confined volumes,
trying to overcome one of the setbacks in crystallography, the amount of material
needed to obtain good samples for diffraction. This chapter is followed by one
by Ibarra-Molero and Sanchez-Ruiz reviewing the recent advances of differential
scanning calorimetry in the field of protein energetics and also in the energetic
analysis of other biological systems. The following two chapters look at recent ad-
vances of IR spectroscopy. IR reflection--absorption spectroscopy (IRRAS) looks
at the air--water interface of membranes and in the chapter by Mendelsohn and
coworkers the general basis as well as the application to lipids and peptides or
proteins are reviewed. Arrondo and coworkers address the analysis of IR spec-
tra by a new approach called two-dimensional generalized spectroscopy, where
information on protein changes after a perturbation is analysed by synchronous
or asynchronous maps. This approach, essentially different from that of 2D-NMR
spectroscopy, uses correlation analysis of the dynamic fluctuations caused by an
external perturbation to enhance spectral resolution.

Three chapters are devoted to different technical developments of NMR. Szy-
persky deals with the principles of ultrafast NMR spectroscopy through the use
of G-matrix Fourier transform (GFT) NMR as a technique for rapid sampling
of multidimensional NMR data. Freeman and Kup e approach the problem of
fast multidimensional NMR by outlining two radical new approaches, one using
spatially encoded single-scan multidimensional NMR and the other using projec-
tion--reconstruction of multidimensional spectra. Size is one of the problems that
NMR has to face in the study of proteins, Ferndndez and Wider analyse the use
of transverse relaxation-optimized spectroscopy (TROSY) in combination with
isotope-labelling techniques to extend applications of NMR spectroscopy in solu-
tion to much larger molecules, such as integral membrane proteins in detergent
micelles, large proteins in monomeric form and in macromolecular complexes,
and intermolecular interactions in large complexes.

Carrién-Vazquez and coworkers have addressed protein nanomechanics, a
new multidisciplinary area of research to directly measure mechanical forces in
single molecules, by applying atomic force microscopy (AFM). Large unilamellar
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vesicles are the subject of the chapter by Bagatolli, who reviews the use of two-
photon fluorescence microscopy in studying the lateral structure of composition-
ally simple vesicles and more complicated membranes. San Martin and Valle look
at the three-dimensional organization and structural features of macromolecular
assemblies, knowledge of which is indispensable for understanding their func-
tions, by using three-dimensional electron microscopy.

This book constitutes a privileged observatory for reviewing novel applica-
tions of biophysical techniques that can help the reader utilize the efforts of the
scientists contributing to the volume to enter an area where the technology is
progressing quickly and where a comprehensive explanation is not always to be
found.

Bilbao, June 2006 José Luis R. Arrondo
Alicia Alonso
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CHAPTER 1 I 1

Protein Nanocrystallization

DiLyaANA GEORGIEVA, JAN PIETER ABRAHAMS, MAXIM E. KuiL

1.1
Introduction

There is no theory that allows us to predict when or where proteins will crystal-
lize. However, for several reasons the problem is a very pertinent one, especially
when we consider crystallization of proteins that are physically confined within a
very small volume.

There is also a practical reason for studying protein crystallization in small,
confined volumes: crystals are required for determining three-dimensional protein
structures by X-ray crystallography. As crystallization conditions can only be found
through trial and error, current practice requires simultaneous testing of many dif-
ferent conditions. The obvious idea that minimizing the volume of single tests maxi-
mizes the number of different conditions that can be screened with a given quantity
of protein prompted the development of high-throughput nanocrystallization sys-
tems (Stevens 2000; Rupp 2003a, b; Bard et al. 2004).

X-ray structure determination succes T. thermophilus

100 1

OIII|IL1

expressed soluble purified  crystallized diffracting phased in PDB

I
o
L

percentage (%)

N
o
1

Fig. 1.1. The success rate of high-throughput crystallization. The overall success of the dif-
ferent stages in the high-throughput approach used by the RIKEN consortium is shown. The
numerical data were presented at the ICCBM10 conference in Beijing by S. Yokoyama and rep-
resent the throughput obtained using expression in Thermus thermophilus. The high overall
success rate in this example is not typical and expression in higher organisms shows a lower
success rate
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CHAPTER 1: Protein Nanocrystallization

Although nanocrystallization is quickly becoming a mainstream method, the
crystallization step remains the major bottleneck in the structure production proc-
ess (Blundell and Patel 2004). This is illustrated by recent data from a large structural
genomics initiative, indicating that the least successful step in going from sequence
to structure is the one from purified protein to crystal. Note that the overall trend
illustrated in Fig. 1.1 is not very different from a report predating the widespread use
of nanocrystallization (Chayen and Saridakis 2002; Chayen 2004). Probably micro-
heterogeneity of the proteins is the prime cause of this bottleneck.

Constructing genetic variants and developing more advanced means of protein
production and purification might increase the success rate. Nevertheless, advances
in nanocrystallization should also accompany this, as nanocrystallization favors
throughput whilst substantially reducing demands on large-scale production and
purification platforms.

Here we focus on miniaturization aimed at increasing the probability of finding
crystallization conditions when the amount of protein available is limited. First we
will review current understanding of nucleation and crystallization of proteins, and
focus mainly on those aspects affected by the volume of the mother liquor. Sub-
sequently we will review in detail the major practical obstacles typical of protein
nanocrystallization. Problems typically associated with nanovolumes (500 nL or
less) concern their dispensing, evaporation and mixing'. We also discuss the limits
imposed by the design of substrates suitable for storing liquid arrays, the robotic ac-
curacy of dispensing strategies, and strategies for scoring nanocrystallization trials.

1.2
Nucleation and Crystallization in Nanovolumes

Naively, one might think that the protein concentration determines the level of
supersaturation regardless of the volume. However, this may not be the case, con-
sidering that in tiny droplets the surface tension forces become relevant and below
a certain volume even predominant. Inside a small nanodroplet the pressure can
be substantially higher than the ambient pressure and can be calculated using the
Young-Laplace equation (for a review see de Gennes 1985; Blokhuis 2004). However,
these effects are less likely to influence protein crystallization in the microliter range.
The pressure difference between the inside of a water droplet of 100-um radius and
the gas phase for a surface tension of 72 mN/m is only equal to 1.44 kPa (kN/m?).
Giegé and coworkers studied the influence of external hydrostatic pressure on the
nucleation and growth of lysozyme crystals and reported that increasing the pres-
sure from 0.1 MPa (atmospheric pressure) to 250 MPa leads to reduction of the size
and number of lysozyme crystals. Moreover a transition to urchinlike particles made
of crystalline needles progressively occurs (Lorber et al. 1996; Kadri et al. 2003).

These considerations are obviously irrelevant when the protein is confined with-
in a lipid membrane and thus do not apply for proteins dissolved in the cytoplasm

! Classical numerical rounding separates the nanoliter from the microliter range: |ess than 0.5
is rounded to zero, if one wants to define the nanoliter regime its upper boundary is 500 nL.



1.2 Nucleation and Crystallization in Nanovolumes I 3

w
w

mean number of nuclei

0 100 200 300

volume (nl)

Fig. 1.2. Heterogeneous nucleation in submicroliter volumes. The average number of tetrago-
nal crystals per droplet detected 24 h after mixing as a function of the volume of the droplet.
Each data point is the count obtained from 16 droplets. In the smaller droplets needlelike
crystals showed a higher relative abundance. (From Bodenstaff et al. 2002)

of living cells. The pressure inside a living cell is well regulated and partially deter-
mined by the presence of surrounding tissue. In plant cells the turgor or intracellular
pressure can reach several atmospheres at most (Tomos and Leigh 1999).

For practical purposes it is more important that the homologous nucleation rate
in protein crystallization is theoretically determined by the level of supersaturation,
and it is independent of the volume of the mother liquor. If at a certain level of su-
persaturation it takes on average a full day to form a stable nucleus that grows into
a macroscopic protein crystal in say 1 pL, then it would take 50 days on average for
a similar event to occur in a volume of 20 nL. If the nucleation rate per unit volume
is constant, reduction of the crystallization volume therefore results in a reduced
chance of finding crystals. In other words, one has to increase the level of supersatu-
ration in nanoliter crystallization trials in order to observe rare nucleation events.
The relation between the crystallization volume in submicroliter volumes and the
observed number of crystals is shown in Fig. 1.2 and indicates that there is a de-
pendence on the droplet volume (Bodenstaff et al. 2002). The relation appears to be
linear, but does not go through the origin, indicating that a basic assumption of the
homogeneous nucleation theory is not satisfied. This suggests that heterogeneous
nucleation plays an important role in low volumes. Vekilov et al. report that despite
precautions, heterogeneous nucleation is always observed in their experiments and
led to a nonzero intercept of the linear dependence of N (mean number of observed
crystals) as a function of the induction time, At, in a volume of 700 nL (Galkin and
Vekilov 1999; Chernov 2003; Vekilov and Galkin 2003).

Note that although the probability of finding a crystal is very low, a nucleus can
always be formed owing to a spontaneous (homogeneous) nucleation event because
of density fluctuations (ten Wolde and Frenkel 1997) At this point two types of het-
erogeneous nucleation should be distinguished: heterogeneous nucleation that de-



