Comprehensive Chemical Kinetics Volume 37

CHEMICAL KINETICS

EDITED BY

R.G. COMPTON M.A., D. Phil. (Oxon.)

Oxford University
The Physical and Theoretical Chemistry Laboratory
Oxford, England

G. HANCOCK

Oxford University
The Physical and Theoretical Chemistry Laboratory
Oxford, England

VOLUME 37

APPLICATIONS OF KINETIC MODELLING

1999

ELSEVIER

AMSTERDAM-LAUSANNE-NEW YORK-OXFORD-SHANNON-SINGAPORE-TOKYO

ELSEVIER SCIENCE B.V.
Sara Burgerhartstraat 25
P.O. Box 211, 1000 AE Amsterdam, The Netherlands

@ 1999 Elsevier Science B.V. All rights reserved.

This work is protected under copyright by Elsevier Science, and the following terms and conditions apply to its use:

Photocopying

Single photocopies of single chapters may be made for personal use as allowed by national copyright laws. Permission of the Publisher and payment of a fee is required for all other photocopying, including multiple or systematic copying, copying for advertising or promotional purposes, resale, and all forms of document delivery. Special rates are available for educational institutions that wish to make photocopies for non-profit educational classroom use.

Permissions may be sought directly from Elsevier Science Rights & Permissions Department, PO Box 800, Oxford OX5 1DX, UK, phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.co.uk. You may also contact Rights & Permissions directly through Elsevier's home page (http://www.elsevier.nl), selecting first 'Customer Support', then 'General Information', then 'Permissions Query Form'.

In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA; phone: (978) 7508400, fax: (978) 7504744, and in the UK through the Copyright Licensing Agency Rapid Clearance Service (CLARCS), 90 Tottenham Court Road, London W1P 0LP, UK; phone: (444) 171 631 5555; fax: (444) 171 631 5500. Other countries may have a local reprographic rights agency for payments.

Denvative Works

Tables of contents may be reproduced for internal circulation, but permission of Elsevier Science is required for external resale or distribution of such material.

Permission of the Publisher is required for all other derivative works, including compilations and translations

Electronic Storage or Usage

Permission of the Publisher is required to store or use electronically any material contained in this work, including any chapter or part of a chapter.

Except as outlined above, no part of this work may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the Publisher.

Address permissions requests to: Elsevier Science Rights & Permissions Department, at the mail, fax and e-mail addresses noted above.

Notice

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made.

First edition 1999

Library of Congress Cataloging in Publication Data

```
Applications of kinetic modelling / edited by R.C. Compton, G. Hancock.

p. cm. -- (Comprehensive chemical kinetics - v. 37)
Includes bibliographical references and index.
ISBN 0-444-50164-9
1. Chemical kinetics--Mathematical models. I. Compton, R. G. II. Hancock, G. (Gus) III. Series.
(05501.8242 vol. 37
(00502)
541,3194 s--dc21
[541,3194 to 15118]
99-17977
CIP
```

ISBN: 0 444 41631 5 (Series) ISBN: 0 444 50164 9 (Vol. 37)

The paper used in this publication meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper).
Printed in The Netherlands.

COMPREHENSIVE CHEMICAL KINETICS

COMPREHENSIVE

THE PRACTICE AND THEORY OF KINETICS (3 volumes) Section 1. HOMOGENEOUS DECOMPOSITION AND ISOMERISATION Section 2. REACTIONS (2 volumes) Section 3. INORGANIC REACTIONS (2 volumes) ORGANIC REACTIONS (5 volumes) Section 4. Section 5 POLYMERISATION REACTIONS (3 volumes) Section 6. OXIDATION AND COMBUSTION REACTIONS (2 volumes) SELECTED ELEMENTARY REACTIONS (1 volume) Section 7 Section 8. HETEROGENEOUS REACTIONS (4 volumes) KINETICS AND CHEMICAL TECHNOLOGY (1 volume) Scouon In. MODERN METHODS, THEORY AND DATA

COMPREHENSIVE CHEMICAL KINETICS

ADVISORY BOARD

Professor C.H. BAMFORD

Professor S.W. BENSON

Professor G. GEE

Professor G.S. HAMMOND

Professor K.J. LAIDLER

Professor SIR HARRY MELVILLE

Professor S. OKAMURA

Professor Z.G. SZABO

Professor O. WICHTERLE

Volumes in the Series

	Section 1.	THE PRACTICE AND THEORY OF KINETICS (3 volumes)
Volume 1 Volume 2 Volume 3	The Practice The Theory of The Formation	
	Section 2.	HOMOGENEOUS DECOMPOSITION AND ISOMERISATION REACTIONS (2 volumes)
Volume 4 Volume 5		on of Inorganic and Organometallic Compounds on and Isomerisation of Organic Compounds
	Section 3.	INORGANIC REACTIONS (2 volumes)
Volume 6 Volume 7		Non-metallic Inorganic Compounds Metallic Salts and Complexes, and Organometallic Compounds
	Section 4.	ORGANIC REACTIONS (5 Volumes)
Volume 8 Volume 9 Volume 10 Volume 12 Volume 13	Ester Forma Electrophilic	sfer I Elimination Reactions of Aliphatic Compounds tion and Hydrolysis and Related Reactions Substitution at a Saturated Carbon Atom Aromatic Compounds
	Section 5.	POLYMERISATION REACTIONS (3 Volumes)
Volume 14 Volume 14A Volume 15	Free-radical	of Polymers Polymerisation Polymerisation
	Section 6.	OXIDATION AND COMBUSTION REACTIONS (2 volumes)
Volume 16 Volume 17	Liquid-phase Gas-phase C	
	Section 7.	SELECTED ELEMENTARY REACTIONS (1 volume)
Volume 18	Selected Ele	ementary Reactions

Volume 19 Volume 20 Volume 21	Simple Processes at the Gas-Solid Interface Complex Catalytic Processes Reactions of Solids with Gases
Volume 22	Reactions in the Solid State
	Section 9. KINETICS AND CHEMICAL TECHNOLOGY (1 volume)
Volume 23	Kinetics and Chemical Technology
	Section 10. MODERN METHODS, THEORY, AND DATA
Volume 24	Modern Methods in Kinetics
Volume 25	Diffusion-limited Reactions
Volume 26	Electrode Kinetics: Principles and Methodology
Volume 27	Electrode Kinetics: Reactions
Volume 28	Reactions at the Liquid-Solid Interface
Volume 29	New Techniques for the Study of Electrodes and their Reactions
Volume 30	Electron Tunneling in Chemistry. Chemical Reactions over Large Distances
Volume 31	Mechanism and Kinetics of Addition Polymerizations
Volume 32	Kinetic Models of Catalytic Reactions
Volume 33	Catastrophe Theory
Volume 34	Modern Aspects of Diffusion-Controlled Reactions
Volume 35	Low-temperature Combustion and Autoignition
Volume 36	Photokinetics: Theoretical Fundamentals and Applications
Volume 37	Applications of Kinetic Modelling

Section 8.

HETEROGENEOUS REACTIONS (4 volumes)

Contributors to Volume 37

J.E.T. ANDERSEN	Department of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark
N.H. ANDERSEN	Department of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark
H.L. BANDEY	Department of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
P.N. BARTLETT	Department of Chemistry, Southampton University, Highfield, Southampton SO17 1BJ, United Kingdom
W.R. BOWEN	Centre for Complex Fluids Processing, Department of Chemical and Biological Process Engineering, University of Wales Swansea, Swansea SA2 8PP, United Kingdom
C. BOXALL	Centre for Photochemistry, Department of Chemistry, University of Central Lancashire, Preston, Lancashire PR1 2HE, United Kingdom
C.M.A. BRETT	Departamento de Química, Universidade de Coimbra, 3049 Coimbra, Portugal
S. BRUCKENSTEIN	Department of Chemistry, University at Buffalo, Buffalo, NY 14260, USA
S. BUCAK	School of Chemical Sciences, University of East Anglia, Norwich, Norfolk NR4 7TJ, United Kingdom
E.J. CALVO	INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, AR-1428 Buenos Aires, Argentina
R.A. ETCHENIQUE	INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, AR-1428 Buenos Aires, Argentina
P.R. FISK	Peter Fisk Associates, 9 St Swithins Road, Whitstable, Kent, CT5 2HT, United Kingdom
E.P. FRIIS	Department of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark

Contributors IX

M.G. FORD	Biological Sciences, University of Portsmouth, Hampshire, United Kingdom
J. HADGRAFT	The Welsh School of Pharmacy, University of Wales, Cardiff, Cardiff, CF1 3XF, United Kingdom
B.G.D. HAGGETT	Research Centre, University of Luton, The Spires, 2 Adelaide Street, Luton, Bedfordshire, LU1 5DU, United Kingdom
A. HAMNETT	Department of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
A.R. HILLMAN	Department of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
N. HILAL	Centre for Complex Fluids Processing, Department of Chemical and Biological Process Engineering, University of Wales Swansea, Swansea, SA2 8PP, United Kingdom
M.L. HITCHMAN	Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
M. JAIN	Centre for Complex Fluids Processing, Department of Chemical and Biological Process Engineering, University of Wales Swansea, Swansea, SA2 8PP, United Kingdom
P. JONATHAN	Shell Research and Technology Centre, Thornton, Cheshire, CH1 3SH, United Kingdom
R.W. LOVITT	Centre for Complex Fluids Processing, Department of Chemical and Biological Process Engineering, University of Wales Swansea, Swansea, SA2 8PP, United Kingdom
J.V. MACPHERSON	Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
L.L. MADSEN	Department of Manufacturing Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
R.A. MARCUS	Department of Chemistry, California Institute of Technology, Pasadena, CA 91125, USA
M. MISRAN	School of Chemical Sciences, University of East Anglia, Norwich, Norfolk NR4 7TJ, United Kingdom
A.W. MOHAMMAD	Centre for Complex Fluids Processing, Department of Chemical and Biological Process Engineering, University of Wales Swansea, Swansea, SA2 8PP, United Kingdom
P. MØLLER	Department of Manufacturing Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark

X Contributors

A.R. MOUNT	Department of Chemistry, University of Edinburgh, The Joseph Black Building, West Mains Road, Edinburgh EH9 3JJ, United Kingdom
A.M. OLIVEIRA BRETT	Departamento de Química, Universidade de Coimbra, P-3049 Coimbra, Portugal
L.M. PETER	Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
J.A.P. PIEDADE	Departamento de Química, Universidade de Coimbra, P-3049 Coimbra, Portugal
M.T. ROBERTSON	Department of Chemistry, University of Edinburgh, The Joseph Black Building, West Mains Road, Edinburgh EH9 3JJ, United Kingdom
B.H. ROBINSON	School of Chemical Sciences, University of East Anglia, Norwich, Norfolk NR4 7TJ, United Kingdom
S.H.P. SERRANO	Departamento de Química, Universidade de Coimbra, P-3049 Coimbra, Portugal
A.O. SHARIF	Centre for Complex Fluids Processing, Department of Chemical and Biological Process Engineering, University of Wales Swansea, Swansea, SA2 8PP, United Kingdom
M.H. THUESEN	Department of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark
J. ULSTRUP	Department of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark
E.N.K. WALLACE	Department of Chemistry, Southampton University, Highfield, Southampton SO17 1BJ, United Kingdom
P. WATSON	Biological Sciences, University of Portsmouth, Hampshire, United Kingdom
D.E. WILLIAMS	Department of Chemistry, University College London, 20 Gordon St. London WC1H 0AJ, United Kingdom
P.M. WILLIAMS	Centre for Complex Fluids Processing, Department of Chemical and Biological Process Engineering, University of Wales Swansea, Swansea, SA2 8PP, United Kingdom
C.J. WRIGHT	Centre for Complex Fluids Processing, Department of Chemical and Biological Process Engineering, University of Wales Swansea, Swansea, SA2 8PP, United Kingdom

Preface

Volume 37 is concerned with the use and role of modelling in chemical kinetics and seeks to show the interplay of theory or simulation with experiment in a diversity of physico-chemical areas in which kinetics measurements provide significant physical insight. Areas of application covered within the volume include electro- and interfacial chemistry, physiology, biochemistry, solid state chemistry and chemical engineering.

A leading contributor to this general area has been Professor W. John Albery, FRS to whom the contributors and editors dedicate this book. An appreciation of his work, written by Professor M.L. Hitchman, appears in the preceding page.

Oxford July 1998 R.G. COMPTON G. HANCOCK

Professor W. John Albery, F.R.S.

John Albery

One enduring memory of John Albery acolytes is the unfailing and unerring way he arrived at approximate analytical solutions for complex physical chemical problems, often with the aid of the biblical-like tome of Abramowitz and Stegun. Another enduring memory many will harbour is of working on a delicate piece of instrumentation and having a laboratory visitation from the Master, which also unfailingly led to a definitive result, although not always as accurate as that achieved theoretically. This bifunctional characteristic of John Albery of being able to use theoretical models of elegant simplicity and to drive forward a research programme which also had a strong practical emphasis was celebrated in September of 1996 when a catholic group of scientists gathered at University College to mark the year of his 60 birthday. The meeting within the space of just two days was a remarkable event, for many aspects of John Albery's career were covered. His theatrical talents were marked with a review after the conference dinner involving, among others, his musical collaborator John Gould and a former scientific collaborator, Mary Archer displaying her considerable range of vocal and thespian talents. Those who have worked with John Albery over the years have also experienced his tremendous joie de vivre and have come to recognise him not only as an outstanding scientist, but also a bon viveur. And these characteristics were celebrated in gourmet and bacchanalian style. However, first and foremost in the two days, there were the scientific contributions from colleagues, students, and postdocs of the last 30 years or so. A good number of these have contributed to this volume.

John Albery's research career started off in R.P. Bell's group in the Physical Chemistry Laboratory in Oxford. This was in the early 60s and at that time major advances were being made in the study of fast reactions in solution. Ronnie Bell's interest in fast proton transfers led to John Albery working on an electrochemical technique for measuring these reactions using a rotating disk electrode. The first chapter in this volume by Rudy Marcus who, through his Honorary Fellowship at University College,

XIV Dedication

also has had a long standing relationship with John Albery links into John's kinetic interests and particularly highlights the interaction between theory and experiment which, as indicated above, has characterised so much of his career. John's doctoral work with rotating disks developed into his lifetime passion for electrochemistry and many of the other chapters in this volume reflect the impact he has had on electrochemical theory and practice in the second half of the twentieth century. John Albery has more than 150 publications on electrochemical related topics. Many of these papers have been seminal. For example, the early papers on ring-disk electrodes in the 1960s laid the basis for the extensive development of a powerful tool for electrochemical diagnostics. Papers in the 1970s on electrochemistry in ESR opened up new possibilities of monitoring electrochemical processes. And in the 1980s some of the studies of modified electrodes have thrown new light on these important electrode systems. Furthermore, John Albery's contributions have not only been at the fundamental level, but also in the application of principles to practical problems, especially in the area of sensors. All of these topics are dealt with to a greater or lesser extent in this volume.

John Albery has not just restricted the use of his talents to electrochemistry, for his interests extend into other areas of physical chemistry and beyond, for example with his very significant excursions into the chemical and biological spheres, with investigations of diffusion and transport process in two phase systems and of enzyme kinetics.

John Albery's contributions to electrochemistry, in particular, and to broader areas of physical chemistry, in general, have been recognised both nationally and internationally. He has held a number of distinguished visiting positions overseas, has been a Tilden Lecturer of the Royal Society of Chemistry, and was elected to Fellowship of the Royal Society in 1985. This volume is a small additional recognition of his achievements. It is, though, much more personal for it is dedicated to John Albery from the large number of his former students, co-workers and colleagues in the UK and worldwide for the many, many ways he has helped and furthered their professional lives and careers.

M.L. HITCHMAN

Contents

			@#####################################	XI XIII
1			Theory and Experiment in Reaction Kinetics (R.A. Marcus)	I
	1.1		ction	1
	1.2		es of interaction of theory and experiment	2
		1.2.1	High-resolution overtone spectroscopy of many-atom systems :	2
			Long-range ET in proteins	7
		1.2.3	ET, an early puzzle	8
		1.2.4	Ion, atom and group transfers	13
		1.2.5	Photosynthetic reaction center ET	10
		1.2.6	Solvent dynamics and the delayed recognition of Kramer's	
			theory	18
		1.2.7	Unimolecular reaction rates and products' quantum states	
			distribution	21
		1.2.8	Unimolecular reaction rates in clusters	25
		1.2.9	Vibrational adiabaticity and reaction coordinate	26
		1.2.10	Graph theory and additivity in delocalized (aromatic)	
			molecules	28
R	eferen	ces	***************************************	29
2	The a	applicatio	on of approximate analytical models in the development of	
			rodes for NADH oxidation (P.N. Bartlett and E.N.K. Wallace)	35
	2.1		other with approximate analytical models?	35
	2.2		oxidation	38
		2.2.1	Nicotinamide adenine dinucleotide (NAD*)	38
		2.2.2	Direct electrochemistry	39
		2.2.3	Common approaches	4()
		2.2.4	Chemically modified electrodes for NADH oxidation	45
		2.2.5	The common approach to modelling NADH oxidation	47
		2.2.6	Kinetic modelling at electrodes modified by films	48
	2.3	Poly(ar	niline)	55
		2.3.1	Introduction	55
		2.3.2	Acid catalysed decomposition of NADH	59
		2.3.3	Poly(aniline) at pH 7	60
		2.3.4	Experimental results	62
		2.3.5	Kinetic model	70

XVI Contents

	2.4	Analysis of experimental data	73
		2.4.1 The effect of film thickness	73
		2.4.2 The effect of electrode potential	73
		2.4.3 The effect of rotation rate	75
		2.4.4 The effect of the addition of NAD ⁺ to the system	75
		2.4.5 Global fit	77
		2.4.6 Uninhibited and inhibited models	78
		2.4.7 NADPH oxidation	82
	2.5	Conclusions	84
Ap	pendi	x: Notation	86
		es	87
3	Electi	rochemistry of DNA (A.M. Oliveira Brett, S.H.P. Serrano and A.J.P.	
	Pieda	de)	91
	3.1	Introduction	91
	3.2	The double helix DNA	92
	3.3	The triple helix DNA	94
	3.4	DNA electrochemistry	96
		3.4.1 Adsorption at electrode surfaces	97
		3.4.2 Glassy carbon-modified electrodes	101
	3.5	DNA biosensors	108
	3.6	Electrochemistry for probing DNA interactions	110
	3.7	Conclusions	114
R	eference	ces	115
	V21	Samuel War and the older (I. Hadasafa)	101
4		tic modelling and the skin (J. Hadgraft)	121
	4.1	Introduction	121
	4.2	The route of penetation	121
	4.3	Fick's first law	123
	4.4	Fick's second law	125
	4.5	Penetration enhancement	127
	4.6	In vitro-in vivo modelling	130
_	4.7	Conclusions	131
R	eteren	ces	131
5	Elect	ron transport and two-dimensional organization of metalloprotein	
_		rbates investigated by cyclic voltammetry and in situ scanning tunnelling	
		atomic force microscopy (E.P. Friis, J.E.T. Andersen, L.L. Madsen,	
		øller, M.H. Thuesen, N.H. Andersen and J. Ulstrup)	133
	5.1	Introduction	133
	5.2	Some observations on the behaviour of proteins at solid-liquid	133
	5.4	interfaces	135
	5.3	Approaches to electrochemical ET mechanisms of multi-centre	133
	5.5	metalloproteins	137
		5.3.1 Properties and cyclic voltammetry of <i>P. stutzeri</i> cytochrome c ₄	137
		5.5.1 Froperties and cyclic voltaminetry of F. stutzert cytochrome c4	13/