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Preface

It seems doubtful whether we can expect to
understand fully the instability of fluid flow
without obtaining a mathematical representa-
tion of the motion of a fluid in some particular
case in which instability can actually be ob-
served, so that a detailed comparison can be
made between the results of analysis and those
of experiment.

— G.I. Taylor (1923)
Though the equations of fluid dynamics are quite complicated, there are
configurations which allow simple flow patterns as stationary solutions (e.g.
flows between parallel plates or between rotating cylinders). These flow
patterns can be obtained only in certain parameter regimes. For parameter
values not in these regimes they cannot be obtained, mainly for two different
reasons:

e The mathematical existence of the solutions is parameter dependent;
or
e the solutions exist mathematically, but they are not stable.

For finding stable steady states, two steps are required: the steady states
have to be found and their stability has to be determined.

Only a few laminar flows correspond to explicitly known solutions of
the equations of motion. In the case of the Taylor problem, for instance,
only Couette flow (1.12) is explicitly known. Even fewer flows than explic-
itly known are simple enough to allow the detailed analysis of their stabil-
ity with the methods of mathematical physics. The recent development of
large computers and of numerical methods makes it possible to solve the
full nonlinear equations for many parameter values and to investigate the
stability properties of the computed steady states. Scientific computing cre-
ated completely new possibilities. Nevertheless, only all available methods,
ie.

e experiments with fluids;

e explicit solution of the equations, when possible, and perturbation
analysis in a neighborhood of such solutions;

e numerical solution of the full nonlinear equations and numerical sta-
bility analysis
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together give a more or less complete picture. In the following text we
will see again and again how results on the Taylor problem obtained with
different methods complement and supplement each other.

It is one of the merits of G.I. Taylor that he saw which aspects of flows
between rotating cylinders can or must be neglected to obtain a simplified
model which is accessible to mathematical analysis. In his work of 1923
he obtained calculated as well as measured results — impressive for their
vastness, completeness and accuracy. Even more impressive are the com-
parison and good agreement (less than 5% deviation of the calculated from
the measured values, with about 2% errors in the measurements).

Since then, the ‘ Taylor problem’ is a popular research subject, because
it is so simple and at the same time so complex. The investigations dis-
cussed in the following were performed by mathematicians, physicists and
engineers. Contact and exchange between disciplines is typical for work on
the Taylor problem: from the beginning, results obtained by theoretical
investigations and by experiments were compared to each other, and this
comparison was always considered important [Tay, AH92]. Often the Tay-
lor problem was a test case for newly developed methods, and it initiated
and stimulated the development of new methods.

For mathematicians it is one of the popular examples, especially:
e for studying bifurcations (pitchfork, Hopf and homoclinic), hysteresis
and catastrophes; and
e for the development and testing of new methods (analytical and nu-
merical).

Because of the successful cooperation with other disciplines it is a good
example of Applied Mathematics.

Physicists use it especially for studying:
e the laminar — turbulent transition and
e the occurrence of instabilities owing to the dynamical effects of rotation
or (more basically) the occurrence of instabilities of fluid flow.

Engineers are especially interested because of practical applications:

e In bearings, an axle or pin rotates in a liquid. This liquid is confined
or flows in axial direction. Because of the rotating axle it is practically
impossible to keep such a configuration perfectly closed to vacuum.
This is why the bearings of satellites, of space shuttle etc. do not
simply contain oil, but a ‘magnetic suspension’: a mixture of plastic-
coated iron particles and oil. A magnetic field then confines the iron
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particles, and surface effects force the oil to stay with the particles
[Stie].

e In turbines there is a roughly similar situation, but a blade turns and
the flow through the configuration is important.

e For separation of bio fluids, e.g. for separation of liquid and corpuscles
of blood, stationary Taylor vortices with radial through flow have been
used: the liquid passes through the porous outer cylinder, the corpus-
cles stay in the ‘sieve’. The vortex movement cleans the outer cylinder
and keeps it from filling up. In this process the blood corpuscles do
not get damaged as much as in the older centrifugal process.

e Also, stationary Taylor vortices with radial through flow and a porous
outer cylinder have been used for washing wool.

e During chemical reaction processes it is important that the flows pass-
ing each other have well-defined speeds, in order that the reacting
fluids mix in well-defined mass ratios. The control of speed via control
of Reynolds number is relatively simple. In the Taylor apparatus it is
achieved by control of the angular speeds of the cylinders. The mixing
of the reacting fluids happens at the boundaries of the wavy vortices:
the local velocity changes considerably at these interfaces and this is
favorable for mixing. In the interior of the vortices there is not much
mixing — the diffusion into the interior of the vortices is too slow [SKC].

In the following we will consider only the simplest basic configuration of
the Taylor problem: a Newtonian fluid with constant density, viscosity and
temperature between concentric cylinders with periodic boundary condi-
tions in the axial direction. There is a considerable amount of research on
variations of this basic configuration [AH92, Roe85, Hol83]:

e short cylinders with rigid lids on top and bottom (boundary effects
are not neglected): the Benjamin problem;

e variation of the geometric configuration: concentric spheres or ellipses,
non-concentric cylinders, variation of gap width with length, etc.;

e additional through flow in the radial or axial direction;

e additional temperature gradient in the radial direction;

e variation of the fluid: non-Newtonian fluids like magnetic suspensions,
polymer solutions, liquid crystals, etc.

The earth and also other planets rotate. Vortex rings are sometimes visible
in their atmosphere (rising air over the tropic rain forests, sinking air over
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the desert belt of the earth). In this case there is an additional temper-
ature gradient which must not be neglected. For studying meteorological
questions another model problem is thus relevant, the Bénard problem: a
fluid in a gravitational field between parallel plates or spheres of different
temperatures. According to more recent insights, the compressibility of the
atmosphere is more important than its viscosity [Lo93a]. This reduced the
importance of the Bénard problem for meteorology. But it is still important
for the investigation of flows in other geophysical fluids (in the oceans, in
the liquid core of the earth etc.) and also in astrophysics. Besides this, it
is a very important model problem for the same basic questions for which
the Taylor problem is studied.

There is an abundant amount of literature on both problems. Here
only books and review articles are listed:

Taylor problem: [Cha, DR, DPS, Stu, Wim, BC86, AH92, D092, CI94];
Bénard problem: [Cha, DR, Bus85, Bus89, Strau.

The reviews on the Taylor problem mostly concern experiments and
results obtained with perturbation methods and with methods of mathe-
matical physics. The rich literature on numerical investigations consists of
articles in journals and in proceedings volumes. They are not adequately
mentioned in general reviews. To my knowledge there is no general review
that adequately integrates those results which were obtained by numerical
methods.

In the following text, we will discuss the Taylor problem in great detail.
When discussing the Rayleigh-Bénard problem we will concentrate on those
aspects which are of importance for understanding the Taylor problem.

I am very grateful to all who gave me the opportunity for joint work
and/or intensive discussion on the topics of this book. Special thanks are
due to Herb Keller and Philip Saffman, who introduced me to the Taylor
problem, to Fritz Busse, who taught me that I should look at the Rayleigh-
Bénard problem to understand the Taylor problem better, to Dietrich Lortz,
to Frank Pohl, who did the programming for the (until now unpublished)
investigations of the 9 x 9 model in Chapter 4, to Eva Sombach, who made
many figures look better, and to John Bolstad, who critically commented
on the whole manuscript.
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Chapter 1

The Taylor Experiment

In this chapter we discuss the Taylor experiment and mathematical model-
ing of it. We review experimental results and investigations of the stability
of Couette flow. Numerical modeling of Taylor vortex flows will be discussed
in the next chapter.

1.1 Modeling of the experiment

1.1.1 Introduction

In homogeneous fluids instability often is caused by dynamic effects of ro-
tation. An important example for this type of centrifugal instability is flow
between rotating cylinders. The instability of rotating fluid was first inves-
tigated by Lord Rayleigh (1880), in the case of inviscid fluids (v = 0).

Though the assumption v = 0 seemed to be a straightforward simplifi-
cation in physics, it has strong consequences for the mathematical nature of
the describing equations: they are then the (historically older) Euler fluid
equations instead of the Navier-Stokes equations. For v = 0 the second
derivatives in (1.3)-(1.6) are not present, and thus part of the boundary
conditions for the full system cannot be satisfied. If the problem is further
simplified by considering only circumferential flows (0, v(r),0,p(r)), r being
the distance from the axis of rotation, flows with arbitrary circumferential
velocities v(r) = r{)(r) are possible.

Heuristic physical reasoning led Rayleigh to derive his famous sta-
bility criterion, see for instance [DR, p. 71ff]. He also noticed an analogy

1



2 Chapter 1. The Taylor Experiment

to gravitational instability of stratified fluids at rest (= Rayleigh-Bénard
convection, see below).

Rayleigh’s Circulation Criterion: Necessary and sufficient for stabil-
ity of an awisymmetric flow of angular velocity Q(r) with respect to axi-
symmetric disturbances is:

D) o= 2l (r2em)’ >o. (1.1)

=S
If a flow is called stable if the kinetic energy of axisymmetric, z-periodic
perturbations is bounded for all admissible initial conditions, this criterion
can be proved mathematically [Cha, §67], [Lo93b].

The stability of viscous (v # 0) rotating fluids was first investigated
by chance. In 1881, M. Margules [Marg| in Vienna suggested to measure
the viscosity v of a fluid by putting it into the gap between two concentric
cylinders, rotating one of them, and measuring the torque exerted onto the
other cylinder. Couette (1890) measured the viscosity of water of different
temperatures by this technique and found values close to the values known
today. For small angular velocities he observed the expected linear relation.
For larger angular velocities he observed a different inclination. This was
interpreted as onset of turbulence (see Figs. 1.2 and 1.3 below and egs.
(1.14) and (2.86)).

Mallock (1888, 1896) independently performed similar experiments.
Though he also focused on measuring viscosity, Lord Kelvin used his ex-
periment to get insights on the stability of viscous flows between rotating
cylinders (letter to Rayleigh [D092]). Later on G.I. Taylor looked at Mal-
lock’s experiments under the viewpoint of stability [Tay]. He found that
Mallock’s results partially contradicted Rayleigh’s criterion (1.1) for invis-
cid flows and that it seemed practically impossible to deduce any rules from
these experiments. Taylor analyzed and criticized Mallock’s experiments
very carefully and pointed out the following possible sources of error:

a) length and diameter of the outer cylinder were nearly of the same size
(ca 20 cm);

b) Mallock used the full lengths of the cylinders for his measurements;

c) one of the two cylinders was probably not held rigidly enough and
could perform small lateral movements.

Mallock attempted to construct his three apparati such that ‘the water’
in the gap ‘is very nearly in the same condition it would be if’ the two
cylinders ‘were infinitely long’ [D092]. He substituted the original bottom
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by one of liquid mercury in the course of his work. This suggests that
he himself noticed that influences of the bottom were a problem. Taylor
guessed that a) and b) led to the result that Mallock’s experiment fea-
tured instability by 3-dimensional disturbances favored by the bottom and
was thus dominated by end effects [Tay|. He found new approaches such
that these problems were carefully avoided and such that his experiment
could actually be modeled mathematically with periodic boundary condi-
tions in infinitely long cylinders. Also, he constructed his apparatus such
that both cylinders could rotate independently. Thus a wider parameter
regime became accessible.

In dimensional variables, the problem has the following quantities to
be chosen by the experimenter:

Ry radius of the inner cylinder;

Rs radius of the outer cylinder;

H total length of the cylinders;

L, length of that portion of the cylinders where the measurements are
made;

0y angular velocity of the inner cylinder;

Q9 angular velocity of the outer cylinder;

v kinematic viscosity of the fluid.

Experimenters usually give the aspect ratio
':=H/D, D:=Ry— Ry (1.2)

of their experiment.

Following Taylor, the Taylor problem in the strong sense has theoret-
ically infinitely long cylinders, and the experimenters using Taylor’s model
usually made sure that the published results do not depend on the aspect
ratio. To achieve negligibly small end effects,

e the aspect ratio I' is made large (Taylor used I' > 90);

e measurements are performed only in the middle portion of the cylin-
ders, far away from top and bottom (Taylor used 20 cm out of 90
cm);

e the lids at top and bottom are designed in a sophisticated way.

Today, the most advanced way to mimic infinitely long cylinders is using
ramps at the end portions of the cylinders: the radius of the inner cylinder
may be increased or the radius of the outer cylinder may be decreased
towards the ends, with optimized length and inclination angle [AC, RP87].
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Also, the influence of other effects which are not included in the math-
ematical model but which could be found in a real experiment must be kept
small enough to be negligible. They are of two types: simplifying idealiza-
tions and unavoidable imperfections. Idealizations typically are eliminated
when science gets more advanced and they turn out to be too unrealis-
tic; imperfections get reduced with the advance of technology. Depending
on the questions to be investigated, it is not always clear if a deviation
mathematical model — real experiment has to be classified as idealization
or imperfection. We give a few examples for both, in the framework of the
questions to be investigated in the following text.

Idealizations are for instance:

the fluid is inviscid (eliminated);

the cylinders are infinitely long, i.e. end effects can be neglected;

the fluid is homogeneous, i.e. the influence of the aluminum flakes in
the oil can be neglected; the influence of gravity can be neglected;

the flow is isothermal, i.e. internal heating of the fluid because of dis-
sipation can be neglected; viscosity and density are constant.

Imperfections are for instance:
the cylinders are not perfectly concentric;
a cylinder was not held rigidly enough and could perform small lateral
movements;
the cooling device works reliably only up to certain Reynolds numbers.

To keep the effects both of idealizations and of imperfections reliably negli-
gibly small sometimes required quite some efforts and inventiveness of the
experimenters and is discussed in their papers. We shall mention further
examples where they played an important role.

Figure 1.1 shows Taylor’s apparatus as given in [Tay]. For technical
details of later experiments see for instance [Co65, DS, BuKo, AC, ACDH,
ALS, DL87, AH92], and the review article [Do92].

Following Taylor, comparison between experiment and mathematical
model was always considered important. In some cases, the agreement be-
tween computed and measured values of flow parameters was excellent:

comparison of neutral curves of Couette flow by Taylor [Tay], see
Fig. 1.4;
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observation

Figure 1.1: Taylor’s apparatus [Tay, Fig. 8]. Observations were made in the range
of the glass cylinder G.

comparison of torques for Re < 2.2 Re., by Meyer-Spasche/Keller, see
Figs. 1.2 and 1.3;

comparison of stability limits for Re < 2 Re., by Riecke/Paap [RP86,
Figs.2 and 3|, see Fig. 3.37.

In several cases when agreement was poor, convincing explanations were
found, and errors could then be reduced considerably. Examples:

e During the investigations of the Eckhaus instability leading to Fig.
3.37, it was found that gravity affected the results. After this was de-
tected, its influence was excluded by using horizontal cylinders instead
of vertically standing ones (see the section on the Eckhaus instability).
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e In a case when computer simulation and experiment gave qualitatively
the same, but quantitatively strongly differing results (the curves ob-
tained were shifted from each other by a fixed amount), it was found
that this was due to a systematic error in measuring [CIM85].

The only pronounced modeling disagreement in the Taylor vortex com-
munity is whether one can ever neglect the role of the aspect ratio of the
experiment or if it always has to be taken into account [BM] (see subsection
‘end effects’ in this chapter and section ‘validity of the numerical model’ in
the next chapter).

1.1.2 Mathematical description of the experiment

We assume that the experiments are performed with incompressible Newto-
nian fluids at constant temperature, with constant viscosity and constant
density. We thus can describe them by the incompressible Navier-Stokes
equations with no-slip boundary conditions at the two cylinders. The ge-
ometry of the apparatus suggests cylindrical coordinates. Let (r, €, z) be the
spatial coordinates, v = (u, v, w) the corresponding velocity components, p
the pressure, v the viscosity and p the density. The equations then read

du  v? dp u 2 Ov
dv  uwv 1 P v 2 Ou
G = rwmatr(dv it ) (14
dw ad p
% - T os ;‘FVAIU (1.5)
0 = L u,lov, O 1.6
Or r  r o0 0z (1:6)
Here
i _o0 0 wo 9 .
at’ ot or Troae Vo (1.7)
is the material derivative in cylindrical coordinates, and
5, 10 1 02 0?
A= = b ot (1.8)

or? r Or r2 002 022

There are several ways to non-dimensionalize (1.3)—(1.6): we can choose Ry,
Rs, Eﬁ'—RZ or Ry — Ry as characteristic length L and we can choose R,
RoQo, £ (Qg — 1), ... as characteristic velocity V. With each of these



