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Preface

During the past few decades, there has been significant research into
sensor array signal processing, culminating in the development of super-
resolution array processing, which asymptotically exhibits infinite resolu-
tion capabilities.

Array processing has an enormous set of applications and has recently
experienced an explosive interest due to the realization that arrays have a
major role to play in the development of future communication systems,
wireless computing, biomedicine (bio-array processing) and environmental
monitoring.

However, the “heart” of any application is the structure of the employed
array of sensors and this is completely characterized [1] by the array mani-
fold. The array manifold is a fundamental concept and is defined as the locus
of all the response vectors of the array over the feasible set of source/signal
parameters. In view of the nature of the array manifold and its signifi-
cance in the area of array processing and array communications, the role
of differential geometry as the most particularly appropriate analysis tool,
cannot be over-emphasized.

Differential geometry is a branch of mathematics concerned with the
application of differential calculus for the investigation of the properties of
geometric objects (curves, surfaces, etc.) referred to, collectively, as “mani-
folds”. This is a vast subject area with numerous abstract definitions,
theorems, notations and rigorous formal proofs [2,3] and is mainly confined
to the investigation of the geometrical properties of manifolds in three-
dimensional Euclidean space R and in real spaces of higher dimension.

However, the array manifolds are embedded not in real, but in
N-dimensional complex space (where N is the number of sensors). There-
fore, by extending the theoretical framework of R2 to complex spaces, the
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underlying and under-pinning objective of this book is to present a sum-
mary of those results of differential geometry which are exploitable and of
practical interest in the study of linear, planar and three-dimensional array
geometries.

Thanassis Manikas — London 2003
a.manikas@imperial.ac.uk
http://skynet.ee.imperial.ac.uk/manikas.html
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Chapter 1

Introduction

An array system is a collection of sensors (transducers) which are spatially
distributed at judicious locations in the 3-dimensional real space, with a
common reference point. How the sensors are spatially distributed (array
geometry) is influential not only on the overall array capabilities but also on
its “abnormalities.” The type of the sensors varies with the application and
sensors can take a wide variety of forms. Some common examples of sensors
include electromagnetic devices (such as RF antennas, optical receivers,
etc.) and acoustic transducers (such as hydrophones, geophones, ultrasound
probes, etc.).

The signals at the array elements contain both temporal and spatial
information about the array signal environment which is usually contam-
inated by background and sensor noise. Thus, the main aim of array pro-
cessing is to extract and then exploit this spatio-temporal information to
the fullest extent possible in order to provide estimates of the parameters of
interest of the array signal environment. Depending on the application, typ-
ical parameters of interest associated with emitting sources (i.e. signals that
use the same frequency and/or time-slot and/or code) can be the number
of incident signals, Directions-of-Arrival (DOAs), Times-of-Arrival (TOAs),
ranges, velocities etc. Indeed, with an array system operating in the pres-
ence of a number of emitting sources, and by observing the received array
signal-vectors z(¢), the following four general problems are of great interest:

(1) Detection problem — concerned with the determination/estimation of
the number of incident signals. This problem is essentially the spa-
tial analogue of model order selection in time-series analysis. Thus,
the most popular methods for the solution of this problem are based
on “Akaike Information Criterion” (AIC) [4] and the “Minimum
Description Length” (MDL) criterion [5,6]. Both methods involve the
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minimization of a function of the noise eigenvalues of the array output
covariance matrix.

(2) Parameter estimation problem — where various signal and channel
parameters are estimated. One important problem of this type is the
“Direction Finding” (DF). In this case the parameters of interest are
the bearings of emitters/targets (e.g. [7]). This problem is essentially
the spatial analogue of the frequency estimation problem in time-series
analysis.

(3) Interference cancellation (or reception problem) — the acquisition of
one (desired) signal from a particular direction and the cancellation of
unwanted co-channel interfering signals (or jammers), from all other
directions. When the desired signal and the interference occupy the
same frequency band, temporal filtering is inappropriate. However, the
spatial separation of the sources can be exploited using an array of sen-
sors (e.g. an antenna array). This operation falls, in array processing
terms, under the general heading of “beamforming” while, in commu-
nication systems terms, a beamformer is a “linear receiver” (e.g. [8]).

(4) Imaging — here the parameters of interest are the shapes and sizes
of various objects in the environment. These are typically determined
by the generation of two- or three-dimensional maps depicting some
feature of the received signals (e.g. intensity) as a function of their
spatial coordinates (e.g. [9]).

The four types of problem described above are inter-related and the
solution to one problem may result in a partial or complete solution to
another. For example, the successful operation of all parametric parameter
estimation algorithms requires solving firstly the detection problem (i.e.
a priori knowledge of the number of emitters present). Furthermore, once
the number and directions-of-arrival (DOAs) of signals received at the array
site are estimated by solving the detection and direction-finding problems,
nulls may be readily placed along the directions of the unwanted signals,
hence achieving interference cancellation.

The applications of arrays in various scientific disciplines (such as the
ones already mentioned) are extensive and suffice to reveal the multi-
dimensional significance of the array concept. For instance, although array
processing has been extensively used in high frequency communications in
the past, the explosive growth in demand for cellular services in recent years
has placed it at the centre of interest. Spatial diversity is considered to be
one of the most promising solutions for increasing capacity and spectral
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efficiency. Indeed, the integration of array processing and communications
techniques, exploiting the structure of antenna-array systems, has evolved
into a well-established technology. This technology is moving from the con-
ventional direction nulling and phase-arrays to advanced superresolution
spatiotemporal-arrays, MIMO array systems and arrayed wireless sensor
networks, which exploit the spatial and temporal properties of the channel
in their quest to handle multipaths, and to increase capacity and spectral
efficiency. Using these properties, an extra layer of co-channel interfer-
ence (CCI) and inter-symbol-interference (ISI) cancellation is achieved —
asymptotically providing complete interference cancellation.

The performance of array systems, especially the ones with super-
resolution capabilities is, in general, limited by three main factors:

e The presence of inherent background and sensor noise.

e The limited amount of information the sensors can measure due to finite
observation interval (number of snapshots) and array geometry.

e The lack of calibration, modelling errors and system uncertainties
that are embedded in the received array signal-vector z(t), which are
not accounted for. Examples include uncertainties in mutual coupling
between sensors, perturbations in the geometrical and electrical charac-
teristics of the array, the presence of moving emitters, nonplanar wave-
fronts, source angular/temporal spread, etc.

However, the overall quality of the system’s performance is naturally a
function of the array structure in conjunction with the geometrical charac-
teristics of the signal environment, as well as the algorithms employed. An
algorithm would behave differently when used with different array struc-
tures and, vice-versa, a certain array would generate different results when
its output is applied to different algorithms.

1.1 Nomenclature

It is assumed that the reader is familiar with the fundamentals of vector and
matrix algebra. In this book, for typographical convenience, matrices will be
denoted by blackboard bold symbols (e.g. A, T, I) or, in the absence of a cor-
responding blackboard bold symbol, by boldface (e.g. r, k, I'). Any under-
lined symbol will represent a column vector, e.g. A, a, a. Derivatives with
respect to a general parameter p will be denoted with a “dot” (e.g. &), while
the “prime” symbol (e.g. a’) will be reserved for differentiation with respect
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to certain “invariant” parameters. The overall notation to be employed in
this book is as follows:

A, a
Aa
A A

Scalar

Column vector

Matrix

Transpose

Hermitian transpose

Pseudoinverse

Frobenius norm of a matrix

Norm of a vector

Magnitude

Hadamard (Schur) product and division respectively
Kronecker product

Elementwise exponential of vector A or matrix A
Matrix exponential

Trace of matrix A

Determinant of A

Diagonal matrix formed from the elements of A
Column vector consisting of the diagonal elements of A
it" row of A

(ith, j**) element of A

Round down to integer

Expectation operator

Element by element power

Zero vector of N elements

Column vector of N ones

N x N Identity matrix

N x d Zero matrix

Set of real numbers

Set of natural numbers

Set of integer numbers

Field of complex numbers

1.2 Main Abbreviations

AGS  Ambiguous Generator Set
ELA  Equivalent Linear Array
CRB Cramer Rao Bound

DF Direction Finding

DOA Directions of Arrival
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FOV  Field-of-View

SNR Signal-to-Noise Ratio
RMS Root Mean Square
ULA  Uniform Linear Array
UCA  Uniform Circular Array

1.3 Array of Sensors — Environment

By distributing, in the 3-dimensional Cartesian space, a number N > 2
of sensors (transducing elements, antennas, receivers, etc.) with a common
reference point, an array is formed. In general, the positions of the sensors
are given by the matrix r € R3>N

L= [£17£27"'7£N] = [ﬁx,f:wﬂz]T (11)

with 7, = [Xk, Yk, zk]T € R3*? denoting the Cartesian coordinates (loca-
tion) of the kth sensor of the array Vk =1,2,...,N.

It is common practice to express the direction of a wave impinging on
the array in terms of the azimuth angle 6, measured anticlockwise from the
positive x-axis, and the elevation angle ¢, measured anticlockwise from the
x-y plane, as illustrated in Fig. 1.1. Then, the (3 x 1) real unit-norm vector

A

V4

Far-field

7z (0,9)
\<
7

Fig. 1.1 Relative geometry between a far-field emitting source and an array of sensors.
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pointing towards the direction (6, ¢) is
A : i T
uz=u(f,¢) = [cos@cos ¢, sin f cos ¢, sin qb] (1.2)

Note that [[ul| = 1. If the velocity, wavelength and frequency of propaga-
tion of the incident wave is denoted by ¢, A and F., respectively, then the
wavenumber vector in the direction (6, ¢) is defined as

2nF, 2T ;
‘U= —-u in meters
k=k(,¢) = c A (1.3)
Teu in A/2

In the most general case, the parameter space is
Q=1{(0,¢):60€[0°360°) and ¢ € (—90°,90°)} (1.4)

but in most applications,  is restricted to only a sector of interest or,
in other words, field-of-view (FOV). For instance, in the case of ground
surveillance radars, only signals in the plane of the array are of interest —
L.e. the system is azimuth-only.

The array configuration is, to a large extent, dictated by the application
of interest. One obvious restriction is the shape and size of the available
site, which might be, to cite just a few examples, an aircraft’s wing, a ship’s
hull, a building rooftop, or simply a terrain. In addition, if the signals to be
intercepted are known to be coplanar and within a 180° field-of-view, as in
ground and marine navigation applications, then a linear or 1-dimensional
(1D) array of sensors may be sufficient.

(1) Linear or 1-dimensional (1D) Array.
The linear or 1D array consists of a one-dimensional distribution of
sensors along a line conventionally taken as the x-axis (Fig. 1.2(a)),
with sensor positions in units of half-wavelengths given by the matrix

r=[r,,0y,0y]" € R¥N (1.5)
where

ry=[ri,ra,...,7N

]T
The most popular array of this type is the standard Uniform
Linear Array (ULA) whose sensors are uniformly spaced at one half-

wavelength apart along the x-axis. For example, a 5-sensor standard



