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PREFACE

The Brunn-Minkowski theory is the classical core of the geometry of
convex bodies. It originated with the thesis of Hermann Brunn in 1887
and is in its essential parts the creation of Hermann Minkowski, around
the turn of the century. The well-known survey of Bonnesen and
Fenchel in 1934 collected what was already an impressive body of
results, though important developments were still to come, through the
work of A.D. Aleksandrov and others in the thirties. In recent decades,
the theory of convex bodies has expanded considerably; new topics have
been developed and originally neglected branches of the subject have
gained in interest. For instance, the combinatorial aspects, the theory of
convex polytopes and the local theory of Banach spaces attract particu-
lar attention now. Nevertheless, the Brunn—-Minkowski theory has
remained of constant interest owing to its various new applications, its
connections with other fields, and the challenge of some resistant open
problems.

Aiming at a brief characterization of Brunn-Minkowski theory, one
might say that it is the result of merging two elementary notions for
point sets in Euclidean space: vector addition and volume. The vector
addition of convex bodies, usually called Minkowski addition, has many
facets of independent geometric interest. Combined with volume, it
leads to the fundamental Brunn—Minkowski inequality and the notion of
mixed volumes. The latter satisfy a series of inequalities which, due to
their flexibility, solve many extremal problems and yield several unique-
ness results. Looking at mixed volumes from a local point of view, one
is led to mixed area measures. Quermassintegrals, or Minkowski func-
tionals, and their local versions, surface area measures and curvature
measures, are a special case of mixed volumes and mixed area
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viii Preface

measures. They are related to the differential geometry of convex
hypersurfaces and to integral geometry.

Chapter 1 of the present book treats the basic properties of convex
bodies and thus lays the foundations for subsequent developments. This
chapter does not claim much originality; in large parts, it follows the
procedures in standard books such as McMullen & Shephard [26],
Roberts & Varberg [28], and Rockafellar [29]. Together with Sections
2.1, 2.2, 2.4, and 2.5, it serves as a general introduction to the metric
geometry of convex bodies. Chapter 2 is devoted to the boundary
structure of convex bodies. Most of its material is needed later, except
for Section 2.6, on generic boundary structure, which just rounds off the
picture. Minkowski addition is the subject of Chapter 3. Several
different aspects are considered here such as decomposability, approxi-
mation problems with special regard to addition, additive maps and
sums of segments. Quermassintegrals, which constitute a fundamental
class of functionals on convex bodies, are studied in Chapter 4, where.
they are viewed as specializations of curvature measures, their local
versions. For these, some integral-geometric formulae are established in
Section 4.5. Here I try to follow the tradition set by Blaschke and
Hadwiger of incorporating parts of integral geometry into the theory of
convex bodies. Some of this, however, is also a necessary prerequisite
for Section 4.6. The remaining part of the book is devoted to mixed
volumes and their applications. Chapter 5 develops the basic properties
of mixed volumes and mixed area measures and treats special formulae,
extensions and analogues. Chapter 6, the heart of the book, is devoted
to the inequalities satisfied by mixed volumes, with special emphasis on
improvements, the equality cases (as far as they are known) and stability
questions. Chapter 7 presents a small selection of applications. The
classical theorems of Minkowski and the Aleksandrov-Fenchel-Jessen
theorem are treated here, the latter in refined versions. Section 7.4
serves as an overview of affine extremal problems for convex bodies. In
this promising field, Brunn—Minkowski theory is of some use, but it
appears that for the solution of some long-standing open problems new
methods still have to be invented.

Concerning the choice of topics treated in this book, I wish to point
out that it is guided by Minkowski’s original work also in the following
sense. Some subjects that Minkowski touched only briefly have later
expanded considerably, and I pay special attention to these. Examples
are projection bodies (zonoids), tangential bodies, the use of spherical
harmonics in convexity and strengthenings of Minkowskian inequalities
in the form of stability estimates.

The necessary prerequisites for reading this book are modest: the
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usual geometry of Euclidean space, elementary analysis, and basic
measure and integration theory for Chapter 4. Occasionally, use is made
of spherical harmonics; relevant information is collected in the Appen-
dix. My intended attitude towards the presentation of proofs cannot be
summarized better than by quoting from the preface to the book on
Hausdorff measures by C.A. Rogers: ‘As the book is largely based on
lectures, and as I like my students to follow my lectures, proofs are
given in great detail; this may bore the mature mathematician, but it
will I believe, be a great help to anyone trying to learn the subject ab
initio.” On the other hand, some important results are stated as
theorems but not proved, since this would lead us too far from the main
theme, and no proofs are given in the survey sections 5.4, 6.8, and 7.4.

The notes at the end of nearly all sections are an essential part of the
book. As a rule, this is where I have given references to original
literature, considered questions of priority, made various comments and,
in particular, given hints about applications, generalizations and ramifi-
cations. As an important purpose of the notes is to demonstrate the
connections of convex geometry with other fields, some notes do take us
further from the main theme of the book, mentioning, for example,
infinite-dimensional results or non-convex sets or giving more detailed
information on applications in, for instance, stochastic geometry.

The list of references does not have much overlap with the older
bibliographies in the books by Bonnesen & Fenchel and by Hadwiger.
Hence, a reader wishing to have a more complete picture should consult
these bibliographies also, as well as those in the survey articles listed in
part B of the References.

My thanks go to Sabine Linsenbold for her careful typing of the
manuscript and to Daniel Hug who read the typescript and made many
valuable comments and suggestions.



CONVENTIONS AND NOTATION

Here we shall fix our notation and collect some basic definitions. We
shall work in n-dimensional real Euclidean vector space, E", with origin
0, scalar product { -, - ) and induced norm |- |. We shall not distinguish
formally between the vector space E” and its corresponding affine space,
although our alternating use of the words ‘vector’ and ‘point’ is
deliberate and should support the reader’s intuition. As a rule, elements
of E" are denoted by lower-case letters, subsets by capitals and real
numbers by small Greek letters. However, in later chapters the reader
will notice an increasing number of exceptions to this rule.

The vector x e E” is a linear combination of the vectors x,, ...,
x € E" if x = Ajxy + ... + Agx;, with suitable A;, ..., 4, € R. If such A;
exist with A; + ...+ A, =1, then x is an affine combination of x, ...,
x,. For ACE", lin A (aff A) denotes the linear hull (affine hull) of A;
this is the set of all linear (affine) combinations of elements of A and at
the same time the smallest linear subspace (affine subspace) of E”
containing A. Points x1, ..., x;, € E" are affinely independent if none of
them is an affine combination of the others, i.e., if

k k
>Ax;=o0 withA e Rand D4 =0
i=1

i=1

implies that A; = ... = A, = 0. This is equivalent to the linear independ-
ence of the vectors x; — xy, ..., x, — x;. We may also define a map
TE"—>E" xR by 7(x):=(x,1); then x,, ..., x, € E" are affinely
independent if and only if 7(x,), . .., 7(x,) are linearly independent.

For x, y € E" we write
[x, y] ={Q = Ax + Ay[0=A1=1)}
for the closed segment and
[x, ) ={Q1 - Dx + Ay|[0= 1< 1)}
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for a half-open segment, both with endpoints x, y. For A, BCE" and
A € R we define
A+ B:={a+ blae A, b e B},
AA = {Aala € A},

and we write —A for (—1)A, A— B for A+ (—B) and A +x for
A + {x}, where x e E". The set A + B is written A © B and called the
direct sum of A and B if A and B are contained in complementary
affine subspaces of E".

By clA, int A, bd A we denote, respectively, the closure, interior and
boundary of a subset A of a topological space. For A C[E", the sets
relint A, relbd A are the relative interior and relative boundary, that is,
the interior and boundary of A relative to its affine hull.

The scalar product in E” will often be used to describe hyperplanes
and halfspaces. A hyperplane of E” can be written in the form

H,,={x e E"|(x, u) = a}
with ueE"\{o} and a€R; here H,,=H,g if and only if
(v, B) = (Au, Aa) with A+ 0. We say that u is a normal vector of H, .
The hyperplane H, , bounds the two closed halfspaces

Hy, = {x €e E"|(x, u) = a},

H,:={x eE"(x, u) = a}.
Occasionally we also use ( -, - ) to denote the scalar product on E” x R
given by

((x, 8), (y, M) =(x, y) + &n.

An affine subspace of E” is often called a flat, and the intersection of
a flat with a closed halfspace meeting the flat but not entirely containing
it will be called a half-flat. A one-dimensional flat is a line and a
one-dimensional half-flat a ray.

The following metric notions will be used. For x,y eE"” and
@+ ACE", |x — y| is the distance between x and y and

d(A, x) = inf{|x — al|la € A}
is the distance of x from A. For a bounded set @+ A C E",
diam A := sup {|x — y||x, yeA}
is the diameter of A. We write
B(z, p) = {x elk”

lx — z| = p}
and
Bo(z,p) = {x € lE"llx - z| < p}
respectively for the closed and open balls with centre z € E" and radius
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p>0. B" := B(o, 1) is the unit ball and
s := {x € E"

x| = 1}
the unit sphere of E".

By #* we denote the k-dimensional Hausdorff (outer) measure on
E", where 0= k = n. If A is a Borel subset of a k-dimensional flat E¥
or a k-dimensional sphere S¥ in E", then Z*(A) coincides respectively
with the k-dimensional Lebesgue measure of A computed in E* or with
the k-dimensional spherical Lebesgue measure of A computed in sk,
Hence, all integrations with respect to these Lebesgue measures can be
expressed by means of the Hausdorff measure Z%. In integrals with
respect to A" we often abbreviate d4"(x) by dx. The n-dimensional
measure of the unit ball in E” is denoted by k,, and its surface area by
w,, thus

11'"/2 2Tl'n/2

—_—— W, = " (S" ) = nk, = ]
n n
l‘(l + ?) ['(7)

Linear maps, affine maps and isometries between Euclidean spaces
are defined as usual. In particular, a map ¢:E" — E" is a translation if
@(x)=x + 1t for x e E" with some fixed vector t € E", the translation
vector. The set A + ¢ is called the translate of A by ¢t. The map @ is a
homothety if ¢(x) = Ax + t for x € E" with some A >0 and some ¢ € E".
The set AA + ¢t with A>0 is called a homothet of A. Sets A, B are
called positively homothetic if A =AB +t with t e E" and A >0, and
homothetic if either they are positively homothetic or one of them is a
singleton (a one-pointed set). A rigid motion of E" is an isometry of E”
onto itself, and it is a rotation if it is an isometry fixing the origin. Each
rigid motion is the composition of a rotation and a translation. A rigid
motion is called proper if it preserves the orientation of E", otherwise it
is called improper. A rotation of E” is a linear map; it preserves the
scalar product and can be represented, with respect to an orthonormal
basis, by an orthogonal matrix; this matrix has determinant 1 if and only
if the rotation is proper. The composition of a rigid motion and a
dilatation, by which we mean a map x+— Ax with A >0, is called a
similarity .

By SO(n) we denote the group of proper rotations of E”. With the
topology induced by the usual matrix norm it is a compact topological
group. The group of proper rigid motions of E" is denoted by G, and
topologized as usual. Also, the Grassmannian G(n, k) of k-dimensional
linear subspaces of E” and the set A(n, k) of k-dimensional affine
subspaces of E” are endowed with their standard topologies.

The Haar measures on SO(n), G,, A(n, k) are denoted respectively

Kn = H"(B") =
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by v, u, ur. We normalize v by (SO(n)) = 1. The normalizations of the
measures u and y; will be fixed in Section 4.5 when they are needed.

For an affine subspace E of E” we denote by projg the orthogonal
projection from E” onto E. We often write projs A =: A|E for A CE"
(since A is a set, no confusion with the restriction of a function, for
example f|E, can arise).

Some final remarks are in order. Since any k-dimensional affine
subspace E of E" is the image of EX under some isometry, it is clear
(and common practice without mention) that all notions and results that
have been established for E*¥ and are invariant under isometries can be
applied in E; similarly for affine-invariant notions and results.

The following notational conventions will be useful in several places.
If f is a homogeneous function on E", then f denotes its restriction to
the unit sphere $”~!. Very often, mappings of the type f: X X " > M
will occur where X is some class of subsets of E”. In this case we
usually abbreviate, for fixed K € X, the function f(K, -):E" — M by
fk-

Finally we wish to point out that in definitions the word ‘if’ is always
understood as ‘if and only if’.



CONTENTS

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

2.1
2.2
2:3
2.4
2.5
2.6

31
3.2
33
34
3.5

4.1
4.2
43
4.4

Preface
Conventions and notation

Basic convexity

Convex sets and combinations
The metric projection
Support and separation
Extremal representations
Convex functions

Duality

The support function

The Hausdorff metric

Boundary structure

Facial structure

Singularities

Segments in the boundary
Polytopes

Higher regularity and curvature
Generic boundary structure

Minkowski addition

Minkowski addition and subtraction
Summands and decomposition
Approximation and addition

Additive maps

Zonoids and other classes of convex bodies

Curvature measures and quermassintegrals
Local parallel sets

Curvature measures and area measures
The area measure of order one

Additive extension

103
119

126
126
142
157
166
182

197
197
200
214
219



vi

4.5
4.6

5.1
5.2
53
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

71
7.2
7.3
7.4

Contents

Integral-geometric formulae
Local behaviour of curvature measures

Mixed volumes and related concepts

Mixed volumes and mixed area measures

Extensions of mixed volumes

Special formulae for mixed volumes and quermassintegrals
Moment vectors and curvature centroids

Inequalities for mixed volumes

The Brunn—-Minkowski theorem

The Minkowski and isoperimetric inequalities
The Aleksandrov-Fenchel inequality
Consequences and improvements
Generalized parallel bodies

Equality cases and stability

Linear inequalities

Analogous notions and inequalities

Selected applications

Minkowski’s existence theorem
Uniqueness theorems for area measures
The difference-body inequality

Affinely associated bodies

Appendix Spherical harmonics
References

List of symbols

Author index

Subject index

226
261

270
270
284
289
303

309
317
327
333
343
351
376
382

389
389
397
413
428
433
474
478
484



1

Basic convexity

1.1. Convex sets and combinations

A set A CE is convex if together with any two points x, y it contains
the segment [x, y], thus if
(1—-—A)x +Aye A forx,ye A and0=A=1.

Examples of convex sets are obvious; but observe also that By(z,p) U A
is convex if A is an arbitrary subset of the boundary of the open ball
Bo(z, p). As immediate consequences of the definition we note that
intersections of convex sets are convex, affine images and pre-images of
convex sets are convex and if A, B are convex, then A + B and AA
(A € R) are convex.

Remark1.1.1. For AC[E" and A, pu>0 one trivially has AA +
A D (A+ u)A. Equality (for all A, u>0) holds precisely if A is
convex. In fact, if A is convex and x € AA + uA, then x = Aa + ub with
a, b € A and hence

x=(A+,u)(Aiua+ Af#b)e(l+y)A;
thus AA + uA = (A + u)A. The other direction of the assertion is trivial.

A set A CLE" is called a convex cone if A is convex and nonempty
and if x € A, A=0 implies Ax € A. Thus a nonempty set A CE" is a
convex cone if and only if A is closed under addition and under
multiplication by non-negative real numbers.

By restricting affine and linear combinations to non-negative coeffi-
cients, one obtains the following two fundamental notions. The point
x e E" is a convex combination of the points x, ..., x; € E" if there
are numbers Ay, ..., 4, € R such that



2 Basic convexity

k

k
x=2:1/lix,-,}.,-§0 (i=1,...,k),21,1,~=

Similarly, the vector x € E" is a positive combination of the vectors x,

.y xe e BT f
k

x=2Ax; with4; Z0 (i=1,..., k).
i=1

For A CE" the set of all convex combinations (positive combinations)
of any finitely many elements of A is called the convex hull (positive
hull) of A and is denoted by conv A (pos A).

Theorem1.1.2. If A CE" is convex, then convA = A. For an arbitrary
set ACLE", convA is the intersection of all convex subsets of E"
containing A. If A, B CE", then conv(A + B) = conv A + conv B.

Proof. Let A be convex. Trivially, A C conv A. By induction we show
that A contains all convex combinations of any k points of A. For k =2
this holds by the definition of convexity. Suppose that it holds for £ — 1
and that x = A x; + ...+ A4x, with x, ..., x4, € A, A +...+4, =1
and 4, ..., A, >0, without loss of generality. Then

k—1 A
x=(01-A) D1
i=1

x; + Akxk e A
Ak

since

Ai
P 21 A
and hence
k-1 /1
i= 11 - Ak
by hypothesis. This proves A = conv A. For arbitrary A CE" let D(A)
be the intersection of all convex sets K CE" containing A. Since
A CconvA and conv A is evidently convex, we have D(A) C conv A.
Each convex K with A C K satisfies conv A C conv K = K, hence
conv A C D(A), which proves the equality.
Let A, BCLE". Let x € conv(A + B), thus

k

k
= > A(a; + b) witha; e A, bje B, 4, =0, DA =
i=1 i=1

x; € A

and hence x = >Aa;+ D Ab;econvA +convB. Let xeconvA +
conv B, thus

X = Zlia,» -+ z”lbl
! J
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witha;€ A, bje B, A, u; 20, XA =2u;=1. We may write
X = Zl,u,(a, + bl)
".’
and deduce that x € conv(A + B). ]

An immediate consequence is that conv(conv A) = conv A.

Theorem1.1.3. If ACE" is a convex cone, then posA = A. For a
nonempty set A C E", pos A is the intersection of all convex cones in E"
containing A. If A, B C ", then pos(A + B) = pos A + pos B.

Proof. As above. |
The following result on the generation of convex hulls is fundamental.

Theorem 1.1.4 (Carathéodory’s theorem). If A CE" and x e conv A,
then x is a convex combination of affinely independent points of A. In
particular, x is a convex combination of n + 1 or fewer points of A.

Proof. The point x € conv A has a representation
k k

Aix; withx; e A, A4, >0, DA =1
i=1 i=1

with some k € N, and we may assume that k is minimal. Suppose that
X1, ..., x; are affinely dependent. Then there are numbers a9, ...,
ay € R, not all zero, with

X =

k k
Zaixi =0 and Zaf; = 0.
i=1 i=1

We can choose m such that A,,/«,, is positive and, with this restriction,
as small as possible (observe that all A; are positive and at least one «; is
positive). In the affine representation

k A
x = E(Ai - C"i)xi
i=1 ¥m

all coefficients are non-negative (trivially, if a; =0, otherwise by the
choice of m) and at least one of them is zero. This contradicts the

minimality of k. Thus x;, ..., x; are affinely independent, which
implies Kk = n + 1. |

The convex hull of finitely many points is called a polytope. A
k-simplex is the convex hull of k& + 1 affinely independent points, and
these points are the vertices of the simplex. Thus Carathéodory’s
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theorem states that conv A is the union of all simplices with vertices in
A.

Another equally simple and important result on convex hulls is the
following.

Theorem 1.1.5 (Radon’s theorem). Each set of affinely dependent points
(in particular, each set of at least n + 2 points) in E" can be expressed as
the union of two disjoint sets whose convex hulls have a common point.

Proof. If x,, ..., x; are affinely dependent, there are numbers a;,

..., ax € R, not all zero, with
k

k
>aix;=0 and Da; = 0.
i=1 i=1

We may assume, after renumbering, that a; > 0 precisely fori=1, ...,
j; then 1 = j < k (at least one «; is + 0, say > 0, but not all a; are > 0).
With

(Y:=Cl’1+...+Cl’,'=—(a’j+1+...+afk)>0
we obtain
i . k &
il {
W T (- —)xA
i=1% i=j+1 al”
and thus x € conv{x;, ..., xj)Nconv{xj,i, ..., xi}. The assertion
follows. ]

From Radon’s theorem one easily deduces Helly’s theorem, a funda-
mental and typical result of the combinatorial geometry of convex sets.

Theorem 1.1.6 (Helly’s theorem). Let Ay, ..., Ay CE" be convex sets.
If any n + 1 of these sets have a common point, then all the sets have a
common point.

Proof. Suppose that Kk > n + 1 (for kK < n + 1 there is nothing to prove,
and for k= n+ 1 the assertion is trivial) and that the assertion is
proved for k — 1 convex sets. Then for i e {1, ..., k} there exists a
point

xi€e AyN...NA;N...N A,

where A; indicates that A; has been deleted. The k = n + 2 points x,
., x; are affinely dependent; hence from Radon’s theorem we can
infer that, after renumbering, there is a point

x e conv{xy, ..., x;} Nconv{xjiy, ..., Xk}
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for some je {1, ..., k—1}. Because xy, ..., X; € Ajyy, ..., A We
have

x econv{xy, ..., X} C A1 N...N A
similarly x € conv {Xj41, ..., ;} C A N...NA; [ |

Here is a little example (another one is Theorem 1.3.11) to demon-
strate how Helly’s theorem can be applied to obtain elegant results of a
similar nature:

Theorem 1.1.7. Let N be a finite family of convex sets in E" and let
K CE" be convex. If any n + 1 elements of N are intersected by some
translate of K, then all elements of N are intersected by a translate of K .

Proof. Let ML ={A,, ..., A;}. To any n + 1 elements of {1, ..., k},
say 1, ..., n+1, there are teE" and x;e A;N(K +t), hence
—teK—A;, for i=1, ..., n+ 1. Thus any n + 1 elements of the
family {K — A,, ..., K — A;} have nonempty intersection. By Helly’s
theorem there is a vector —telE” with —re K — A; and hence
AN(K++EDforie(l,..., k}. B

Next we look at the interplay between convexity and topological
properties. We start with a simple observation.

Lemmal.1.8. Let ACLE" be convex. If xeintA and y ecl A, then
[x,y)Cint A.

Proof. Let z=(1—A)y + Ax with 0<A<1. We have B(x,p) C A for
some p > 0; put B(o, p) =: U. First we assume y € A. Let w € AU + z,
hence w=Au+z with ueU. Then x+ueA, hence w=
(1-A)y+Ax+u)e A. This shows that AU+ zC A and thus
ZE€intA.

Now assume merely that y e cl A. Put V :=[A/(1 — A)]JU + y. There
is some ae AN V. We have a = [A/(1 — A)Ju + y with u € U and hence
z=(1-Aa+AMx—-—u)e A. This proves that [x,y)C A, which
together with the first part yields [x, y) Cint A. ]

Theorem1.1.9. If A CE" is convex, then int A and cl A are convex. If
A CL" is open, then conv A is open.

Proof. The convexity of int A follows from Lemma 1.1.8. The convexity
of cl A for convex A and the openness of conv A for open A are easy
exercises. [



