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Preface

Although this book deals with some selected topics of the theory of function spaces
and the indicated applications, we tried to make it independently readable. For this
purpose we provide in Chapter 1 notation and basic facts, give detailed references and
prove some specific assertions.

Chapters 2 and 3 deal with Haar bases and Faber bases in function spaces of type
B;, and F,,, covering some (fractional) Sobolev spaces, (classical) Besov spaces and
Holder—Zygmund spaces. In higher dimensions preference is given to several types of
spaces with dominating mixed smoothness. This paves the way to study in Chapters 4
and 5 sampling and numerical integration for corresponding spaces on cubes and more
general domains. It is well known that numerical integration is symbiotically related
to discrepancy, the theory of irregularities of distribution of points, preferably in cubes.
This is subject of Chapter 6.

Formulas are numbered within chapters. Furthermore in each chapter all defini-
tions, theorems, propositions, corollaries and remarks are jointly and consecutively
numbered. Chapter n is divided in sections n.k and subsections n.k./. But when
quoted we refer simply to Section n.k or Section n.k./ instead of Section n.k or Sub-
section n.k.l. If there is no danger of confusion (which is mostly the case) we write
A;‘,q, SquA, a;q, sI’,qa ...(spaces) instead of Af,,q, S;!qA, a;,q, s;,qa ve.. Simi-
larly @jm, Ajm, Qkm (functions, numbers, rectangles) instead of a; m, Ajm, Qk m etc.
References ordered by names, not by labels, which roughly coincides, but may occa-
sionally cause minor deviations. The number(s) behind » in the Bibliography mark
the page(s) where the corresponding entry is quoted. log is always taken to base 2. All
unimportant positive constants will be denoted by ¢ (with additional marks if there are
several ¢’s in the same formula). Our use of ~ (equivalence) is explained on p. 176.

It is a pleasure to acknowledge the great help I have received from my colleagues
and friends who made valuable suggestions which have been incorporated in the text.
I am especially indebted to Dorothee D. Haroske for her remarks and for producing all
the figures and to Erich Novak for many stimulating discussions.

Jena, Spring 2010 Hans Triebel



Contents

Preface

1 Function spaces

1.1 ISOtropic SPaces . . . . v v v v v v v i e e e e e e e e e e e e
1.1.1 Definitions . . . . . . . . . .. . .
L12 Atoms . . . . . . . e e e
1.1.3 Localmeans . .. ... ...........uuuuiueuen....
1.14 Wavelets . . . .. ... ... e
1.1.5 Duality and interpolation . . . . . .. ... ... ........
1.1.6 Spacesondomains . ... ...............0.....
1.1.7 Limitingembeddings . . . . . ... .. ... .. ........
1.1.8 Spaces of measurable functions . . . ... ...........

1.2 Spaces with dominating mixed smoothness . . . . ... ... .. ...
1.2.1 Definitions . . . . . . . . ...t i e
122 Atoms . . . . . . e e e e e
123 Localmeans . . . . .. ........uuuuieenenennn..
124 Wavelets . . . ... .. .. ... .
1.2.5 Higherdimensions . . . . ... .. ... ............
1.2.6 Spaces on domains: definitions, problems . . . . . . ... . ..
1.2.7 Spaces on domains: representations, wavelets . . . . . . .. ..
1.2.8 Spaces on domains: extensions, intrinsic characterisations .

1.3 Logarithmicspaces . . .. .. . . ... ... ...,
1.3.1 Introduction . . . . . . .. . . ... ...
1.3.2 Logarithmic spaceson R . . . . .. ... ... .. .......
1.3.3 Isotropic logarithmic spaces: comments, problems, proposals
1.3.4 Logarithmic spaces with dominating mixed smoothness . . . . .

Haar bases

2.1 Classical theory and historical comments . . . . . ... ... .....

2.2 HaarbasesonRandonintervals . .. .. ...............
2.2.1 Introduction and plan of thechapter . . . . .. ... ... ...
2.2.2 Inequalities . . . . . . . ... . .. ...
223 HaarbasesonR. . ... ... ... ... . ... ... .....
2.24 Haarbasesonintervals . . . . .. ... ... ..........
2.2.5 Littlewood—Paley theorem . . . ... ... .. .........

2.3 Haar wavelet baseson R” andoncubes . . . . . ... ... ......
2.3.1 Inequalities . . . . . . ... . ... ...
2.3.2 Haarwaveletbaseson R” . ... ... ... .. ........
2.3.3 Haar waveletbasesoncubes . . . . ... ... .........

2.4 Haar tensor baseson R” andoncubes . . . . ... ... ... .....



viii

Contents
24.1 Introduction . . . . . . . . . . . . it it e e e e 98
2.4.2 HaartensorbasesonR2,1 ... ................. 99
243 Haartensorbaseson R2, 11 . . . . . . . . . v v v v v ... 101
244 Haartensorbasesoncubes . . . . . . ... ... ... ... 106
24.5 Higherdimensions . . . ... ... ... ............ 109
25 Splinebases . . . . .. . ... 112
2.5.1 Preliminaries and basic assertions . . . . . .. ... ... ... 112
2.5.2 SplinebasesonR . .. ... ... ... ... ........ 115
2.5.3 Spline waveletbaseson R” . . . . . . ... ... .. ...... 119
2.54 SplinetensorbasesonR?. . ... ... ... .......... 121
Faber bases 124
3.1 Faberbasesonintervals . .. ... .. ... .............. 124
3.1.1 Introduction and preliminaries . . . .. ... ... ....... 124
3.1.2 Faberbases . . . . . . . . . . i 126
3.1.3 Complements . . . . . . ... .. 130
3.2 Faberbasesoncubes. . . . . . ... ... ... ... 133
3.2.1 Preliminaries and definitions . . . . . ... ... ... ... .. 133
3.2.2 FaberbasesinC(Q2). . . . . .. . ... .. 135
3.2.3 Faberbasesin SAIW(Q*) and S;,B(Q*) . ........... 138
3.2.4 Thespaces Sy, B(Q*)and S;H(@?) . . .. .o oottt . 144
3.2.5 Higherdimensions . . . ... .................. 152
3.3 Thespaces SEBIR®) . . . v covvmmmur st e onmonoows 154
3.3.1 Introduction and definition . . . . . . ... ... ... ... .. 154
332 Properties . . . . . ... i i e e 157
3.4 Basesinlogarithmicspaces . . . ... ... .............. 159
34.1 Preliminaries . . . . . . . . . . . . it 159
342 Thespaces BSP(R)and BSZ(I) . . . oo oot 160
3.43 The spaces Sy B(R) and S;PB(Q?) . . . . . oo .. 163
3.5 Fabersplines: anoutlook . . . ... ... ... ............ 165
351 Preparations . . . . . . . ... i e 165
35.2 Fabersplines . . .. ... ... ... ..., 167
3.5.3 Comments, problems, proposals . . . . . .. ... ....... 172
Sampling 174
4.1 Definitions, sampling in isotropic spaces . . . . . . . . ... ... .. 174
4.1.1 Definitions . . .. ... .. . ... .o 174
4.1.2 Sampling in isotropic spaces . . . . . . . . . ..o ... . 176
4.1.3 Information uncertainty . . . . . . . . . . .. ... ... 181
4.2 Samplingonintervals . . .. ... ... ... ... ... 0., 183
4.2.1 SamplinginA7 (1) . ...................... 183
422 Samplingin Ap,(I) . ... ... 189

4.3 Sampling in spaces with dominating mixed smoothness . . ... . .. 192



4.3.1 Introduction, preliminaries . . .
4.3.2 Main assertions . . . ... ...
433 Complements . . . ... . ...

4.4 Sampling in logarithmic spaces with dominating mixed smoothness .

4.4.1 Introduction and motivation . .
4,42 Basicassertions . . . ... ...

Contents

4.4.3 The spaces Sy B(Q?), main assertions . . . . . .......
4.4.4 Higher dimensions: comments, problems, proposals . . . . . .

5 Numerical integration
5.1 Preliminaries, integration in domains .
5.1.1 Introduction, definitions . . . .
5.1.2 Integration in Lipschitz domains

5.1.3 A comment on integration in E-thick domains . . . . . . .. ..

5.2 Integrationinintervals . . . . .. ...
5.2.1 Mainassertions . . . ... ...
5.2.2 Comments and inequalities . . .

5.3 Multivariate integration . . . . .. ..
5.3.1 Integration in squares . . . . . .
5.3.2 Integrationincubes . . . . . ..

5.3.3 Integration based on logarithmic spaces . . . . . ... ... ..

5.4 Integration in planar domains . . . . .
5.4.1 Introduction, definitions . . . .

5.4.2 Spaces with dominating mixed smoothness, integration . . . . .

6 Discrepancy
6.1 Introduction, definitions . . . . . . . .
6.1.1 Definitions . .. ... .. ...
6.1.2 The one-dimensional case . . .

6.2 Relationships between integral and discrepancy numbers . . . . . . . .

6.2.1 Prerequisites . .. .... ...
6.2.2 Hlawka—Zaremba identity . . .

6.2.3 Equivalences ... ... . ...
6.3 Discrepancy numbers . . .. ... ..
6.3.1 Mainassertions . . . . ... ..

6.3.2 The one-dimensional case, revisited . . . . . ... ... ....

6.3.3 Comments, problems, proposals
Bibliography
List of Figures

Symbols

Index

X

192
195
203

. 208

208
210
212
215

221
221
221
223
224
225
225
228
231
231
236
240
243
243
245

248
248
248
251
252
252
255
257
258
258
262
269

275
289
291
295



Chapter 1
Function spaces

1.1 Isotropic spaces
1.1.1 Definitions

We use standard notation. Let N be the collection of all natural numbers and No =
N U {0}. Let R” be Euclidean n-space, where n € N. Put R = R!, whereas C is the
complex plane. Let S(R™) be the usual Schwartz space and S’(R") be the space of all
tempered distributions on R”. Furthermore, L,(R") with 0 < p < 00, is the standard
quasi-Banach space with respect to the Lebesgue measure in R”, quasi-normed by

1/p
1L, = ([ 1717 ax) (D
with the natural modification if p = oo. As usual, Z is the collection of all integers;
and Z" where n € N, denotes the lattice of all points m = (m,,...,m,) € R” with
mj € Z. Let Njj, where n € N, be the set of all multi-indices,
n
a=(ag,...,an) withajelNoandIa|=Zaj. (1.2)
Jj=1
Ifx =(x1,...,xp) € R"and B = (B1,...,Bn) € N then we put
xB = xf‘ ---xf" (monomials). (1.3)
If ¢ € S(R") then
0®) = (Fo® = 00 [ omax, geR. (14
R"

denotes the Fourier transform of ¢. As usual, F !¢ and ¢V stand for the inverse
Fourier transform, given by the right-hand side of (1.4) with i in place of —i. Here
xE denotes the scalar product in R”. Both F and F~! are extended to S’(R") in the
standard way. Let ¢ € S(R”) with

@o(x) = lif |x] =1 and ¢o(y) =0if|y| > 3/2, (1.5)
and let
ok(x) = po(27%x) —po(27¥*'x), xeR" keN. (1.6)
Since
(o o]
Zq)j(x) =1 forx € R", a.7n

Jj=0
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the ¢; form a dyadic resolution of unity. The entire analytic functions (¢; f )V (x) make
sense pointwise in R” for any f € S’(R").

Definition 1.1. Let ¢ = {¢; ;";0 be the above dyadic resolution of unity.
(i) Let
O0<p<oo, 0<g=<o0,seR. (1.8)

Then B;,(R") is the collection of all f € S’(R") such that

. A 1/q
1f 1B ®lle = (D 27lw; HYILE®DI?) " <00 (19)
Jj=0
(with the usual modification if g = 00).
(ii) Let
O<p<oo, 0<g=<oo, seR. (1.10)
Then F,,(R") is the collection of all f € S’(R") such that

Lf 1Fpg Rl = “(Z2""I(w,-f)v(-)|")1/q|L,,(uz") <0 (1.11)
j=0

(with the usual modification if g = 00).

Remark 1.2. The theory of these spaces and their history may be found in [T83],
[T92], [TO6]. In particular these spaces are independent of admitted resolutions of
unity ¢ according to (1.5)—(1.7) (equivalent quasi-norms). This justifies our omission
of the subscript ¢ in (1.9), (1.11) in the sequel. We remind the reader of a few special
cases and properties referring for details to the above books, especially Section 1.2 in
[TO6].

(i) Let1 < p < co. Then

Ly(R") = F,(R") (1.12)

is a well-known Littlewood—Paley theorem.
(ii) Let 1 < p < oo and k € Ny. Then

WER™) = Ff,(R") (1.13)
are the classical Sobolev spaces usually equivalently normed by
1/p
1 IWE@DI = (3 1D f IL,@®MIP) . (1.14)
| <k

This generalises (1.12).
(iii) Let 0 € R. Then

Ip: £ ((£)°f)" with (§) = (1 + [§)'/? (1.15)
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is a one-to-one map of S(R”) onto itself and of S’(R”) onto itself. Furthermore, I, is
a lift for the spaces A, (R") with A= BorA = Fands € R,0< p<oo(p <oo
for the F-scale), 0 < g < oo,

I A5, (R") = A,.° (R™) (1.16)
(equivalent quasi-norms). With
Hy(R") = IsLp(R"), s€R, 1< p<oo, 1.17)
one has
H,(R") = F,,(R"), seR, 1< p<oo, (1.18)
and
HER™) = WER"), keNop 1<p<oo. (1.19)

Nowadays one calls H,(R") Sobolev spaces (sometimes fractional Sobolev spaces or
Bessel-potential spaces) with the classical Sobolev spaces Wp" (R™) as special cases.
(iv) We denote
€*(R") = B (R"), se€R, (1.20)
as Holder—Zygmund spaces. Let

(ALN)(x) = f(x +h) — f(x), (AL HH(x) = AL, Hx), (1.21)

where x € R"?, h € R*, ] € N, be the iterated differencesin R”. Let0 <s <m € N.
Then

ILf e (R [|m = i | £Co)| + sup ||~ |AR f(x)] (1.22)
xeR”

where the second supremum is taken over all x € R” and 4 € R"” with 0 < |h| < 1,
are equivalent norms in €°(R").

(v) This assertion can be generalised as follows. Once more let0 < s <m € N
and 1 < p,q < oo. Then

dh \ V4
K] n — n —sq m ny 19
17 1B3q(®")lm = 17 1Lp R + /Wg IR AR £ 1Ly (R ,,,|n)
(1.23)
and
1 dit\ Ve
1f 1B, (R)IZ = IlfILp(fR”)II+( [ 1759 sup | AP £ |Lp(R")|? )
0 |h|<t

t
(1.24)
(with the usual modification if ¢ = o0) are equivalent norms in B, (R"). These are
the classical Besov spaces. We refer to [T92, Chapter 1] and [T06, Chapter 1], where
one finds the history of these spaces, further special cases and classical assertions. In
addition, (1.23), (1.24) remain to be equivalent quasi-norms in

B;,(R") with0 < p,g <oo and s > n(max(%, 1)—1), (1.25)
[T83, Theorem 2.5.12, p. 110].
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1.1.2 Atoms

We give a detailed description of atomic representations of the spaces introduced in
Definition 1.1 adapted to our later needs.

Let Q;m be cubes in R” with sides parallel to the axes of coordinates, centred at
27/ m with side-length 2=/ where m € Z" and j € No. If Q is a cube in R” and
r > 0 then rQ is the cube in R” concentric with Q and with side-length r times of the
side-length of Q. Let y;, be the characteristic function of Q,, and

X2 () = 2P gym(x), x € R, j € No, m € Z", (1.26)
its p-normalised modification where 0 < p < oo.

Definition 1.3. Let 0 < p < 00, 0 < g < oo. Then by, is the collection of all
sequences

A={AjmeC:j €Ny meZ"} (1.27)

such that

12 1bpqll = (i( > Iljml”)q/p)l/q < 00 (1.28)

j=0 meZ"

and fp, is the collection of all sequences A according to (1.27) such that

31 gl = | (Z Rma 2 17) " 1L, @) < o0 (1.29)
Jj.m

with the usual modification if p = oo and/or g = oco.
Remark 1.4. One has by, = f5p,0 < p < 0.

Definition 1.5. Lets € R,0 < p < 00, K € Ng, L € Ng and d > 1. Then the
L -functions aj,; : R” > C with j € Ng, m € Z” are called (s, p)-atoms if

supp @jm Cd Qjm, Jj € No, meZ"; (1.30)

there exist all (classical) derivatives D%a;,, with [¢| < K — 1 such that
|D%ajm(x)| < 2776=P) o] < K —1, j € No, m € Z", (1.31)
|D%ajm(x) — D*ajm(y)| < 2776 DK x—y|, Ja| =K1, j € No, m e Z",

(1.32)
where x € R”?, y € R"?, and

f xPajm(x)dx =0, |B|<L, jeN, mezZ". (1.33)
]Rn
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Remark 1.6. No cancellation (1.33) for ag s, is required. Furthermore, if L = O then
(1.33) is empty (no condition). If K = 0then (1.31), (1.32) means thata;,, € L (R")

and |a;jm(x)| < 2776=%). Of course, the conditions for the above atoms depend not
only on s and p, but also on the given numbers K, L, d. But this will only be indicated
when extra clarity is required and denoted as (s, p)k,1,4-atoms. Otherwise we speak
about (s, p)-atoms. If one replaces (1.31), (1.32) by

|D%ajm(x)| < 276Dl o] < K, j € No, m e Z", (1.34)

then the above definition coincides essentially with [T08, Definition 1.5]. But in con-
nection with spline wavelets it is convenient to replace (1.34) with |o| = K by (1.32)
assuming that the derivatives of order K — 1 are only subject to the indicated Lipschitz
conditions. This is immaterial for the following atomic representation theorem. Let as

usual
(max(1 1) 1) o] (ax(1 . ) 1) (1.35)
Op =n —1)-1), =n| m —,—,1)=1). .
j » Pq 7' q

Theorem 1.7. (i) Let0 < p <00,0<qg <00, s € R Let K € Ng, L € No,d € R
with
K>s, L>op-—s, (1.36)

and d > 1 be fixed. Then f € S'(R") belongs to B,,(R") if, and only if, it can be

represented as
o0
=Y Ajmajm (1.37)
j=0meZ"

where ajm are (s, p)-atoms (more precisely (s, p)k,1,4-atoms) according to Defini-
tion 1.5 and A € bpy. Furthermore,

I1Lf 1B5g (RM)|| ~ inf [|2 [bpg | (1.38)

are equivalent quasi-norms where the infimum is taken over all admissible representa-
tions (1.37) (for fixed K, L, d).
(ii) Let0 < p < 00,0 <g <00,5 €R. Let K € Ng, L € No, d € Rwith

K>s, L>opg—s5s, (1.39)

and d > 1 be fixed. Then f € S'(R") belongs to F, (R") if, and only if, it can be
represented by (1.37) where ajm are (s, p)-atoms (more precisely (s, p)k,L,q-atoms)
according to Definition 1.5 and A € fpq. Furthermore,

IS 1 Fpg (R ~ inf |4 | fpq (1.40)

are equivalent quasi-norms where the infimum is taken over all admissible representa-

tions (1.37) (for fixed K, L, d).
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Remark 1.8. Recall that dQ;,, are cubes centred at 2~/m with side-length d 2~/
where j € No and m € Z". For fixed d withd > 1 and j € Ng there is some
overlap of the cubes dQ;, where m € Z". This makes clear that Theorem 1.7
based on Definition 1.5 is reasonable. Otherwise the above formulation with (1.34)
in place of (1.31), (1.32) coincides essentially with [T06, Section 1.5.1]. There one
finds also technical comments how the convergence in (1.37) must be understood. The
replacement of (1.34) by (1.31), (1.32) is justified by the more general assertion in [T06,
Corollary 1.23] which in turn is based on [TrW96], [ET96], but essentially also covered
by [FrJ85], [FrJ90]. Otherwise we refer to [T92, Section 1.9] where we described the
rather involved history of atoms in function spaces.

1.1.3 Local means

Assertions for local means are dual to atomic representations according to Theorem 1.7
as far as smoothness assumptions and cancellation properties are concerned. We rely
on [T08, Section 1.13] where we developed a corresponding theory. Let Q;n, be the
same cubes in R” as in the previous Section 1.1.2.

Definition 1.9. Let A € No, B € Ng and C > 0. Then the Lo-functions K, : R” -
C with j € No, m € Z", are called kernels (of local means) if

supp kjm C C Qjm, Jj € No, m e Z"; (1.41)
there exist all (classical) derivatives D“kjp, with || < A — 1 such that
|D%kjm(x)] < 27", ja| <A1, j € No, me Z", (1.42)

| D%k jm (x)—D%jm(y)| < 27" A x—y|, || = A—1, j € No, m € Z", (1.43)

where x € R", y € R", and
/ xP kjm(x)dx =0, |B|<B, jeN, meZ" (1.44)
Rn

Remark 1.10. No cancellation (1.44) for k¢, is required. Furthermore, if B = 0
then (1.44) is empty (no condition). If A = O then (1.42), (1.43) means kj, €
Loo(R™) and |kjm(x)] < 2/". Compared with Definition 1.5 for atoms we have
different normalisations. We adapt the sequence spaces introduced in Definition 1.3
correspondingly. Recall that y;,, are the characteristic functions of the cubes Q.

Definition 1.11. Lets € R,0 < p < 00,0 < g < oo. Then ISIS,q is the collection of
all sequences A according to (1.27) such that

1216741l = (iz!’(‘-%m( 3 |,x,m|p)"“’)”" <00 (1.45)

j=0 meZn
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and f;‘q is the collection of all sequences A according to (1.27) such that

170 = | (2% i 1im 1) Ly @] <00 (146
Jjm

with the usual modifications if p = oo and/or g = oo.

Remark 1.12. The notation b;qand f;q (without bar) will be reserved for a slight
modification of the above sequence spaces in connection with wavelet representations.
Similarly as in Remark 1.4 one has bf,p = psp, 0< p<o0.

Definition 1.13. Let f € B;q(IR”) wheres € R,0 < p < 00,0 < g < o0. Letkjm
be the kernels according to Definition 1.9 with A > o, — s where o, is given by (1.35)
and B = 0. Then

bin(f) = Fikim) = [ im0 f0)dy, jeNomezn, (4

are local means, considered as dual pairing within (S(R"), S’(R")). Furthermore,

k(f) = {kjm(f) : j € No, m € Z"}. (1.48)
Remark 1.14. Let%—f—# =1ifl < p<ooand p’ =o0if 0 < p < 1. Then
B TP (R") = B3,(R"Y, s€R,0<p<oo, (1.49)

is the dual space of B;,(R"), [T83, Theorems 2.11.2, 2.11.3]. We refer also to Theo-
rem 1.20 below. Then A > o, — s justifies (1.47) as a dual pairing. We refer for details
to [TO8, Remark 1.14].

Theorem 1.15. (i) Let 0 < p < 00,0 < g < 00, s € R. Let kjn, be the kernels
according to Definition 1.9 where A € Ng, B € N with

A>o0p—5, B>s, (1.50)

and C > 0 are fixed. Let k(f) be as in (1.47), (1.48). Then for some ¢ > 0 and all
f € By (R),
1K) 1bpgll < c |l f |Bpg (RMI. (1.51)

(i) Let0 < p < 00,0 < g <00, 5 € R Let kjn and k(f) be the above kernels
where A € Ng, B € N¢ with

A>o0pg—s, B>y, (1.52)

and C > 0 are fixed. Then for some ¢ > 0 and all f € F,,(R"),

() 1 fogll < € 1L 1Fpg R (1.53)
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Remark 1.16. A proof of this theorem with
|D%kjm(x)| < 2/"Filel ol < A, j € Ng, m € Z", (1.54)

instead of (1.42), (1.43) may be found in [TO08, pp. 7-12] based on [Tri08]. This is the
same type of replacement as in (1.34) compared with (1.31), (1.32). On this basis one
can follow the proof of [T08, Theorem 1.15] without any changes. Then one obtains
the above theorem.

1.1.4 Wavelets

In what follows we rely in addition to atoms and local means on wavelets. We collect
what we need later on. We suppose that the reader is familiar with wavelets in R” of
Daubechies type and the related multiresolution analysis. The standard references are
[Dau92], [Mal99], [Mey92], [Woj97]. A short summary of what is needed may also
be found in [T06, Section 1.7]. We give first a brief description of some basic notation.
As usual, C¥(R) with u € N collects all complex-valued continuous functions on R
having continuous bounded derivatives up to order u inclusively. Let

Yr € C¥(R), v¥meC¥R), ueNN, (1.55)

be real compactly supported Daubechies wavelets with
/ Ypm(x)x¥dx =0 forallv € Ng withv < u. (1.56)
R

Recall that ¢ is called the scaling function (father wavelet) and ¥ps the associated
wavelet (mother wavelet). We extend these wavelets from R to R” by the usual mul-
tiresolution procedure. Let

G = (Gy,...,Gp) € G® = {F, M}", (1.57)
which means that G, is either F or M. Let
G=(Gy,....G,) € G/ ={F,. M}™*, jeN, (1.58)

which means that G, is either F or M where * indicates that at leas;t one of the
components of G must be an M. Hence G° has 2" elements, whereas G’ with j € N
has 2" — 1 elements. Let

n
vl ) =2"2[]ve @' xr—m,), GeG/ mez", (1.59)
r=1
where (now) j € No. We always assume that ¥ r and ¥ in (1.55) have L,-norm 1.
Then ) )
{Y6m:JENo, GEG', meZ"} (1.60)
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is an orthonormal basis in L,(R") (for any u € N) and

o0
=Y Y AjSoainryl (1.61)

Jj=0GeGJ meZ"

with
‘Lr];; ‘Lrj;; (f) - 2jn/2[ f(x) Iém('x)dx - 2jn/2(ﬁ I]Gm) (162)
Rn ’ ’

is the corresponding expansion, adapted to our needs, where 2~/"/2 \Il’ m are uniformly
bounded functions (with respect to j and m). In [T08], based on [HaTOS] [Tri04],
[T06], we dealt in detail with an extension of the L,-theory to spaces of type B and
F, with and without weights, on R”, the n-torus T", smooth and rough domains and
manifolds. In what follows we need only corresponding assertions for B;,(R") and
F,,(R™). We give a brief description. First we adapt the sequence spaces introduced
in Definition 1.11 to the extra summation over G in (1.60). The characteristic function
Xjm of Qjm has the same meaning as there.

Definition 1.17. Lets € R,0 < p < 00,0 < g < 0o. Then b;q is the collection of
all sequences

={A;6eC:jeNy, GeG/, mezZ"} (1.63)
such that
_n q/p
141851l = (sz“ Dy (3 o))" < (1.64)
Jj GeG/ meZn
and f, is the collection of all sequences A in (1.63) such that

. . 1/q
Il = | (22 279135 tim()1%) 1L, RY)

J,G.m

<00 (1.65)

with the usual modification if p = oo and/or g = oo

The wavelets \Ilé,m in (1.59), (1.61) may serve as atoms according to Definition 1.5

(appropriately normalised) and A,’,;G (f) in (1.62) as local means as introduced in Defi-
nitions 1.9, 1.13. Then one can ask under which circumstances the Theorems 1.7, 1.15
can be applied. Otherwise we use standard notation naturally extended from Banach
spaces to quasi-Banach spaces. In particular, {b; }°° 1 C B in a separable complex
quasi-Banach space B is called a basis if any b € B can be uniquely represented as

oo
b= ij bj, A; € C (convergence in B). (1.66)
j=1
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A basis {b;}72, is called an unconditional basis if for any rearrangement o of N
(one-to-one map of N onto itself) {bq(;)}72; is again a basis and

o0
b= ZAGU) bs(jy (convergence in B) (1.67)
j=1

for any b € B with (1.66). Standard bases of separable sequence spaces as considered
in this book are always unconditional. A basis in a separable quasi-Banach space which
is not unconditional is called a conditional basis. We refer to [A1K06] for details about
bases in Banach (sequence) spaces. As justified at the beginning of [T06, Section 3.1.3]
we abbreviate the right-hand side of (1.61) in what follows by

Y MG aimizgl (1.68)
J,G,m

since the conditions for the sequences A always ensure that the corresponding series
converges unconditionally at least in S’(R"), which means that any rearrangement
converges in S’'(R") and has the same limit. Local convergence in Bj, (R") means
convergence in By, (K) for any ball K in R”. Similarly for F7, (R"). Recall that o,
and o, are given by (1.35).

Theorem 1.18. (i) Let0 < p < 00,0 < g <00, s € R, and let \Ilé’m be the wavelets
(1.59) based on (1.55), (1.56) with

u > max(s,op — ). (1.69)

Let f € S"(R"). Then f € Bp,(R") if, and only if, it can be represented as

f=Y Apfain2 W, AEDS,, (1.70)
7,.G,m

unconditional convergence being in S'(R™) and locally in any space ng([R") with
o0 < 5. The representation (1.70) is unique,

S = (1 ) azm
and .
It f = 2"2(£9,,)) (L.12)

is an isomorphic map of By, (R") onto by,. If, in addition, p < 00, g < 00, then
{\I/{;,m} is an unconditional basis in By, (R").
(ii) Let0 < p < 00,0 < g <00, s € R, and

u > max(s, opg — §). (1.73)



