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Preface

The purpose of this book is to provide the reader with an overview of how hydrogen
bonding can contribute to the advancement of the practice of organic synthesis.
The field has grown explosively in recent years, as evidenced by the number of
highlights and reviews devoted to hydrogen bonding in the service of of organic
synthesis. Advances in small-molecule catalysis, computational and experimental
studies of hydrogen bonding catalysis, and structural characterization of enzymes
with hydrogen bonding at the core of their catalytic activity have all contributed to
the advances in the field. It is nearly impossible for practitioners of organic syn-
thesis to keep abreast of all these developments, and I hope that covering most of
these aspects within the framework of a single textbook would assist the synthetic
community in assessing the current power as well as future potential of the field.

The field is covered from seven different angles. The first two introductory
chapters, Chapter 1 (Petri Pihko) and Chapter 2 (Takahiko Akiyama), illustrate the
importance of hydrogen bonding in chemistry and chemical catalysis.

The details of how hydrogen bonding contributes to catalysis are illustrated in
the following chapters. Chapter 3 by Albrecht Berkessel and Kerstin Etzenbach-
Effers describes computational studies of hydrogen bonding catalysts, an essential
feature in analyzing the contributions of hydrogen bonding to catalysis. In Chapter
4, Pihko, Rapakko, and Wierenga provide a general overview of hydrogen bonding
in enzymatic catalysis, and they goes deeper into the structural features of oxy-
anion holes, the powerhouses of many hydrogen bonding enzymes. The idea
behind this chapter is to present an overview of the catalytic machineries of
enzymes and to provide a contrast to the present status of development of small-
molecule hydrogen bonding catalysts.

The small-molecule catalysts are covered in Chapters 5 and 6. In Chapter 5,
Joshua Payette and Hisashi Yamamoto discuss the importance of polar Bronsted-
acid-type catalysts as well as cooperative effects in hydrogen bonding catalysis.
Chapter 6 by Mike Kotke and Peter Schreiner is then devoted to the single most
popular small-molecule catalyst types, the thiourea catalysts. Chapter 6, the longest
of all chapters, also provides an excellent overview of the history and development
of the field of small-molecule hydrogen bond catalysis.

Finally, the applications of hydrogen bonding in total synthesis of complex
molecules are illustrated in the concluding Chapter 7 by Mitsuru Shoji and Yujiro
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Preface

Hayashi. Although the applications of hydrogen bonding catalysts in natural
product synthesis are still in their infancy, hydrogen bonding has been used many
times as a driving force for desired selectivity in total synthesis.

In summary, I hope that this textbook will both stimulate fruitful research in
the field and also encourage practitioners of organic synthesis to use hydrogen
bonding creatively as a tool to solve synthetic challenges.

Jyviskyld, Finland Petri Pihko
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Introduction
Petri Pihko

1.1
Introduction

The purpose of this book is to provide the reader with an overview of how hydrogen
bonding can contribute to the advancement of the practice of organic synthesis.

Hydrogen bonds form typically between polar or polarized X—H bonds and
electronegative acceptor atoms [1-4]. The resulting weak bond, X—H------ A, is
called the hydrogen bond, and it possesses a significant electrostatic character.
Consistent with this, bond strengths of hydrogen bonds in the gas phase are
significantly larger with charged partners than with neutral partners. Typical
strengths of hydrogen bonds are indicated in Table 1.1.

In fact, a vivid demonstration of the power of hydrogen bonds is provided by
the behavior of sulfuric acid. As every student of chemistry knows, accidental
addition of water to concentrated sulfuric acid can lead to a very exothermic reac-
tion that causes the water to boil and may splash concentrated acid everywhere.
For this reason, students are always taught to add sulfuric acid cautiously, with
stirring, to water—never the other way round! When mixed with water, sulfuric
acid dissociates rapidly to generate strongly solvated hydrogen bonded ions. Espe-
cially the H;O" ion is very strongly hydrogen bonded to water and its solvation
shell in water extends beyond its three closest neighbors, giving a solvation energy
of >40kcal/mol. Although there is an entropic cost in orienting the water mole-
cules toward the newly generated H;O* and HSO, ions, the strong hydrogen
bonds that are formed can more than compensate for this and are largely respon-
sible for the heat that is generated.”

Even between neutral molecules, hydrogen bonds are in fact quite strong forces.
They are indeed strong enough to maintain strength in a variety of structures.
These include ice and a vast range of other crystalline structures—in crystals,

1) The enthalpy of dilution of sulfuric acid is compares favorably with the calculated
ca. 880k]J/mol at infinite dilution (N. N. enthalpy of hydration of H* (-1150k]/
Greenwood and A. Earnshaw (1984) mol, see Table 1) if one assumes that the
Chemistry of the Elements. Pergamon first proton of H,SO, dissociates
Press, Oxford, p. 837). This value completely.
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Table 1.1 Calculated and experimental hydrogen bond strengths.

Bond type Calculated Experimental Calculated  Calculation
strength in strength in distance method/notes
the gas phase  the gas phase  dy...s
(kj/mol) (kj/mol) (A)

s % ~20.6 [5] 55017910 SR MP2
ot B RS T g
R
H
on ~108.4 7] =173t 130 BLAP3 Sadlej
gl R 8)
‘0.
H
® -104.3[9] ~132.3 [10] 1.20 C, symmetric
H H (Zundel cation).
OmbpenQ
H H

H,0H""30H, (first —-290.22 [11] —287.7 [12] N/A Eigen cation

solvation shell for MP2

H,0%)

H*(H;0), =1150:1 [13] Commentary on

values [14]
% ~71.4 [15] 1.67 MP2/6-31++G¥*

H H"m,@ -76.0k]J /mol for

O\”/H bidentate binding
O
CH,NH;-OH, ~71.0 [16] ~70.6 [17] 1.72 B3LYP/6-31+G(d)

hydrogen bonds are a very powerful directing force that keeps the molecules
together. The key structures of life would be impossible without hydrogen bonding:
the delicate folds of proteins, the paired and folded forms nucleic acids, DNA and
different RNAs, and the fibers of cellulose are all largely dependent on hydrogen
bonds for their structure.

The strength of hydrogen bond is also strongly dependent on the solvent. In
polar solvents, especially solvents capable of strong intermolecular hydrogen
bonds such as water, hydrogen bonds between two nonwater molecules must be
relatively strong in order to compete with hydrogen bonds provided by water.
Experimentally, it has been established with careful site-directed mutagenesis
studies of enzymes that reasonable net binding energies, in the range of 13-20k]/
mol, are only observed when one of the components is charged [18].



1.2 Hydrogen Bonding in Organic Synthesis

1.2
Hydrogen Bonding in Organic Synthesis

Hydrogen bonds can be used in two different ways to assist in organic synthesis.
First, hydrogen bonds could be used to stabilize desired structures or intermedi-
ates. This is a thermodynamic method of using hydrogen bonds as an assisting
force in organic synthesis. As an example, Nicolaou and co-workers used an
intramolecular hydrogen bond that can be used to stabilize an otherwise unattain-
able thermodynamically unstable nonanomeric spiroketal structure (Scheme 1.1)
[19]. These methods have been used extensively in total synthesis, and they will
be reviewed in Chapter 7 by Shoji and Hayashi.

A second method to utilize hydrogen bonding in organic synthesis is to use
hydrogen bonds as an assisting force in catalysis. The catalysts affect reaction rates,
and therefore this is a kinetic way of using hydrogen bonding.

In order to accelerate reactions, a catalyst should bind the transition states more
strongly than starting materials. This means that typically hydrogen bonding in
catalysis functions best if partial or full negative charges are generated in the
substrate during the reaction. For example, addition of nucleophiles to carbonyl
groups generates negatively charged tetrahedral intermediates with a charge

Attempted stabilization Successful stabilization

with a bulky sulfoxide by hydrogen bonding
TBDPSO TBDPSO
HO o BzO, Og o g 13 o 5
o ar H Ill H
1 2a (13S)

Failed: even after equilibration,
both equatorial and axial sulfoxide .
isomers had the Cy3 spiro center { TFA
in the anomeric configuration ]

2b (13R)

Successful: the nonanomeric
C;3 spiro center is sufficiently
stabilized by hydrogen bonding

Scheme 1.1 Using hydrogen bonding as a thermodynamic
force to stabilize an otherwise unattainable structure.



1 Introduction

largely residing on the oxygen atom. Such intermediates (and transition states
leading to them) can be stabilized by hydrogen bonding [20]. These strategies are
used by numerous enzymes and also by small-molecule catalysts and their impor-
tance in organic synthesis lies in the mildness of the conditions as well as the
immense potential for selective catalysis.

These catalysts, their structures, modes of action, and uses, are discussed in the
rest of the book. Both synthetic small-molecule catalysts as well as some of Nature’s
finest enzymes are discussed and the role of hydrogen bonding in catalysis is

described in detail.
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