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Preface

Over the last half century, deep connections between representation theory and auto-
morphic forms have been established, using a wide range of methods from algebra,
geometry and analyis. In light of these developments, Changho Keem, Toshiyuki
Kobayashi and Jae-Hyun Yang organized an international symposium entitled “Rep-
resentation Theory and Automorphic Forms”, with the hope that a broad discussion
of recent ideas and techniques would lead to new breakthroughs in the field. The
symposium was held at Seoul National University, Republic of Korea, February 14—
17,2005.

This volume is an outgrowth of the symposium. The lectures cover a variety of
aspects of representation theory and autmorphic forms, among them, a lifting of el-
liptic cusp forms to Siegel and Hermitian modular forms (T. Ikeda), systematic and
synthetic applications of the original theory of “visible actions” on complex mani-
folds to “multiplicity-free” theorems, in particular, to branching problems for reduc-
tive symmetric pairs (T. Kobayashi), an adaption of the Rankin—Selberg method to
the setting of automorphic distributions (S. Miller and W. Schmid), recent develop-
ments in the Langlands functoriality conjecture and their relevance to certain conjec-
tures in number theory, such as the Ramanujan and Selberg conjectures (F. Shahidi),
cuspidality-irreducibility relation for automorphic representations (D. Ramakrish-
nan), and applications of Borcherds automorphic forms to the study of discriminants
of certain K3 surfaces with involution that arise from the theory of hypergeomet-
ric functions (K.-I. Yoshikawa). By presenting some of the most active topics in the
field, the editors hope that this volume will serve as an up-to-date introduction to the
subject.
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of the last-named editor; without the very generous financial contribution of the JEI
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Irreducibility and Cuspidality

Dinakar Ramakrishnan

253-37 Caltech
Pasadena, CA 91125, USA
dinakarecaltech.edu

Summary. Suppose p is an n-dimensional representation of the absolute Galois group of Q
which is associated, via an identity of L-functions, with an automorphic representation 7 of
GL(n) of the adele ring of Q. It is expected that 7 is cuspidal if and only if p is irreducible,
though nothing much is known in either direction in dimensions > 2. The object of this article
is to show for n < 6 that the cuspidality of a regular algebraic = is implied by the irreducibility
of p. Forn < 5, it suffices to assume that z is semi-regular.

Key words: irreducibility, Galois representations, cuspidality, automorphic repre-
sentations, general linear group, symplectic group, regular algebraic representations

Subject Classifications: 11F70; 11F80; 22E55

Introduction

Irreducible representations are the building blocks of general, semisimple Galois
representations p, and cuspidal representations are the building blocks of automor-
phic forms 7 of the general linear group. It is expected that when an object of the
former type is associated to one of the latter type, usually in terms of an identity of
L-functions, the irreducibility of the former should imply the cuspidality of the latter,
and vice versa. Itis not a simple matter to prove this expectation, and nothing much is
known in dimensions > 2. We will start from the beginning and explain the problem
below, and indicate a result (in one direction) at the end of the introduction, which
summarizes what one can do at this point. The remainder of the paper will be devoted
to showing how to deduce this result by a synthesis of known theorems and some new
ideas. We will be concerned here only with the so-called easier direction of showing
the cuspidality of = given the irreducibility of p, and refer to [RaS] for a more dif-
ficult result going the other way, which uses crystalline representations as well as a

*Partially supported by the NSF through the grant DMS-0402044.
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refinement of certain deep modularity results of Taylor, Skinner—Wiles, et al. Need-
less to say, easier does not mean easy, and the significance of the problem stems
from the fact that it does arise (in this direction) naturally. For example, # could
be a functorial, automorphic image r(#), for n a cuspidal automorphic representa-
tion of a product of smaller general linear groups: H(A) = [] P GL(mj, A), with
an associated Galois representation ¢ such that p = r(o) is irreducible. If the auto-
morphy of 7 has been established by using a flexible converse theorem ([CoPS1)),
then the cuspidality of z is not automatic. In [RaS], we had to deal with this ques-
tion for cohomological forms 7 on GL(6), with H = GL(2) x GL(3) and r the
Kronecker product, where 7 is automorphic by [KSh1]. Besides, the main result
(Theorem A below) of this paper implies, as a consequence, the cuspidality of 7 =
sym*(#) for 5 defined by any non-CM holomorphic newform ¢ of weight > 2 rel-
ative to I'o(N) C SL(2, Z), without appealing to the criterion of [KSh2]; here the
automorphy of 7 is known by [K] and the irreducibility of p by [Ri].

Write Q for the field of all algebraic numbers in C, which is an infinite, mys-
terious Galois extension of Q. One could say that the central problem in algebraic
number theory is to understand this extension. Class field theory, one of the tower-
ing achievements of the twentieth century, helps us understand the abelian part of
this extension, though there are still some delicate, open problems even in that well
traversed situation.

Let Gg denote the absolute Galois group of @@, meaning Gal(Q/Q). It is a pro-
finite group, being the projective limit of finite groups Gal(K/Q), as K runs over
number fields which are normal over Q. For fixed K, the Tchebotarev density the-
orem asserts that every conjugacy class C in Gal(K /Q) is the Frobenius class for
an infinite number of primes p which are unramified in K. This shows the impor-
tance of studying the representations of Galois groups, which are intimately tied
up with conjugacy classes. Clearly, every C-representation, i.e., a homomorphism
into GL(n, C) for some n, of Gal(K/Q) pulls back, via the canonical surjection
Go — Gal(K/Q), to a representation of Gg, which is continuous for the profinite
topology.

Conversely, one can show that every continuous C-representation p of Gg is
such a pullback, for a suitable finite Galois extension K /Q. E. Artin associated
an L-function, denoted L(s, p), to any such p, such that the arrow p — L(s, p)
is additive and inductive. He conjectured that for any non-trivial, irreducible, con-
tinuous C-representation p of Gg, L(s, p) is entire, and this conjecture is open
in general. Again, one understands well the abelian situation, i.e., when p is a 1-
dimensional representation; the kernel of such a p defines an abelian extension of
Q. By class field theory, such a p is associated to a character ¢ of finite order of
the idele class group A*/Q*; here, being associated means they have the same L-
function, with L(s, &) being the one introduced by Hecke, albeit in a different lan-
guage. As usual, we are denoting by A = R x Ay the topological ring of ade-
les, with Ay = Z ® Q, and by A* its multiplicative group of ideles, which can
be given the structure of a locally compact abelian topological group with discrete
subgroup Q*.
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Now fix a prime number ¢, and an algebraic closure Q; of the field of £-adic
numbers Q¢, equipped with an embedding Q <> Q. Consider the set R¢(n, Q) of
continuous, semisimple representations

pe : Gg — GL(n, Qp),

up to equivalence. The image of Gg in such a representation is usually not finite, and
the simplest example of that is given by the ¢-adic cyclotomic character y, given by
the action of Gg on all the £-power roots of unity in Q. Another example is given
by the 2-dimensional £-adic representation on all the £-power division points of an
elliptic curve E over Q.

The correct extension to the non-abelian case of the idele class character, which
appears in class field theory, is the notion of an irreducible automorphic represen-
tation = of GL(n). Such a z is in particular a representation of the locally compact
group GL(n, A ), which is a restricted direct product of the local groups GL(n, Q,),
where v runs over all the primes p and oo (with Qs = R). There is a correspond-
ing factorization of z as a tensor product ®,x,, with all but a finite number of x p
being unramified, i.e., admitting a vector fixed by the maximal compact subgroup
K. At the archimedean place 0o, 7, corresponds to an n-dimensional, semisimple
representation o () of the real Weil group Wg, which is a non-trivial extension
of Gal(C/R) by C*. Globally, by Schur’s lemma, the center Z(A) ~ A* acts by a
quasi-character w, which must be trivial on Q* by the automorphy of 7, and so de-
fines an idele class character. Let us restrict to the central case when 7 is essentially
unitary. Then there is a (unique) real number # such that the twisted representation
my =7 (t) = = @|-|" is unitary (with unitary central character w, ). We are, by abuse
of notation, writing | - |* to denote the quasi-character | - | o det of GL(n, A), where
| - | signifies the adelic absolute value, which is trivial on Q* by the Artin product
formula.

Roughly speaking, to say that z is automorphic means =, appears (in a weak
sense) in LZ(Z(A)GL(n,Q)\GL(n,A),a)u), on which GL(n, Ar) acts by right
translations. A function ¢ in this L2-space whose averages over all the horocy-
cles are zero is called a cusp form, and = is called cuspidal if =, is generated by
the right GL(n, A f)-translates of such a ¢. Among the automorphic representations
of GL(n, A) are certain distinguished ones called isobaric automorphic representa-
tions. Any isobaric 7 is of the form z; Bz, B - - - H x,, where each x| is a cuspidal
representation of GL(n;, A), such that (ny, na, ..., n,) is a partition of n, where &
denotes the Langlands sum (coming from his theory of Eisenstein series); moreover,
every constituent x j is unique up to isomorphism. Let A(n, Q) denote the set of iso-
baric automorphic representations of GL(n, A) up to equivalence. Every isobaric
has an associated L-function L(s, z) = [], L(s, z,), which admits a meromorphic
continuation and a functional equation. Concretely, one associates at every prime
p where 7 is unramified, a conjugacy class A(z) in GL(n, C), or equivalently, an
unordered n-tuple (ay,p, az,p, ..., an,p) of complex numbers so that

n
L(s,mp) = [ [ = a; ,p™)7".
j=1
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If 7 is cuspidal and non-trivial, L(s, 7) is entire; so is the incomplete one LS5(s, )
for any finite set S of places of Q.

Now suppose p; is an n-dimensional, semisimple £-adic representation of Go =
Gal(Q/Q) corresponds to an automorphic representation 7 of GL(n, A). We will
take this to mean that there is a finite set S of places including £, oo and all the
primes where pe or z is ramified, such that we have

L(s,mp) = Lp(s,pe), VP &S, 0.1)

where the Galois Euler factor on the right is given by the characteristic polynomial
of Frp, the Frobenius at p, acting on p¢. When (0.1) holds (for a suitable S), we will
write

pe < T.

A natural question in such a situation is to ask if 7 is cuspidal when p¢ is irre-
ducible, and vice versa. It is certainly what is predicted by the general philosophy.
However, proving it is another matter altogether, and positive evidence is scarce be-
yond n = 2.

One can answer this question in the affirmative, for any #, if one restricts to those
pe which have finite image. In this case, it also defines a continuous, C-representation
p, the kind studied by E. Artin ([A]). Indeed, the hypothesis implies the identity of
L-functions

L5G,p®pY)=L5@s, 7 xxY), 0.2)

where the superscript S signifies the removal of the Euler factors at places in S, and
pY (resp. =) denotes the contragredient of p (resp. ). The L-function on the right
is the Rankin—Selberg L-function, whose mirific properties have been established in
the independent and complementary works of Jacquet, Piatetski-Shapiro and Shalika
([JPSS], and of Shahidi ([Sh1, Sh2]); see also [MW]. A theorem of Jacquet and
Shalika ([JS1]) asserts that the order of pole at s = 1 of L3, m xzV)is 1iffx
is cuspidal. On the other hand, for any finite-dimensional C-representation 7 of G,
one has

—ords—1 L5(s, 7) = dimgHomg,, a, 1), 0.3)

where 1 denotes the trivial representation of Gg. Applying this with 7 = p ® pY =~
End(p), we see that the order of pole of LS(s,p ® p¥) at s = 1is 1 iff the only
operators in End(p) which commute with the Gg-action are scalars, which means by
Schur that p is irreducible. Thus, in the Artin case, & is cuspidal iff pe is irreducible.

For general £-adic representations p¢ of Gg, the order of pole at the right edge
is not well understood. When p; comes from arithmetic geometry, i.e., when it is a
Tate twist of a piece of the cohomology of a smooth projective variety over Q which
is cut out by algebraic projectors, an important conjecture of Tate asserts an analogue
of (0.3) for = = p¢ ® p,’, but this is unknown except in a few families of examples,
such as those coming from the theory of modular curves, Hilbert modular surfaces
and Picard modular surfaces. So one has to find a different way to approach the
problem, which works at least in low dimensions.
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The main result of this paper is the following:

Theorem A. Let n < 5 and let £ be a prime. Suppose py < =, for an isobaric,
algebraic automorphic representation & of GL(n, A), and a continuous, €-adic rep-
resentation p¢ of Gg. Assume

(i) pe is irreducible
(ii) T isodd ifn > 3

(iii) & is semi-regular if n = 4, and regular ifn = 5
Then & is cuspidal.

Some words of explanation are called for at this point. An isobaric automor-
phic representation 7 is said to be algebraic ([C£1]) if the restriction of oo :=
o(noo(l-g—")) to C* is of the form ®?=IXJ" with each y; algebraic, i.e., of the form
z — zPiz% with pj, q; € Z. (We do not assume that our automorphic representa-
tions are unitary, and the arrow 7, — 0o is normalized arithmetically.) Forn = 1,
an algebraic z is an idele class character of type Ag in the sense of Weil. One says
that & is regular iff oo |+ is a direct sum of characters y ;, each occurring with multi-
plicity one. And r is semi-regular ((BHRY]) if each y; occurs with multiplicity at most
two. Suppose ¢ is a 1-dimensional representation of Wig. Then, since Wﬁb ~ R* &is
defined by a character of R* of the form x — |x|? - sgn(x)?©), with a(&) € {0, 1};
here sgn denotes the sign character of R*. For every w, let 6o0[&] := 0 (oo ( 1%"))[{]
denote the isotypic component of &, which has dimension at most 2 (resp. 1) if 7 is
semi-regular (resp. regular), and is acted on by R*/R* =~ {41}. We will call a
semi-regular 7 odd if for every character ¢ of W, the eigenvalues of R*/R% on the
&-isotypic component are distinct. Clearly, any regular 7 is odd under this definition.
See Section 1 for a definition of this concept for any algebraic 7, not necessarily
semi-regular.

I want to thank the organizers, Jae-Hyun-Yang in particular, and the staff, of
the International Symposium on Representation Theory and Automorphic Forms in
Seoul, Korea, first for inviting me to speak there (during February 14-17, 2005),
and then for their hospitality while I was there. The talk I gave at the conference
was on a different topic, however, and dealt with my ongoing work with Dipendra
Prasad on selfdual representations. 1 would also like to thank F. Shahidi for helpful
conversations and the referee for his comments on an earlier version, which led to
an improvement of the presentation. It is perhaps apt to end this introduction at this
point by acknowledging support from the National Science Foundation via the grant
DMS — 0402044.

1 Preliminaries
1.1 Galois representations

For any field k with algebraic closure k, denote by Gy the absolute Galois group of k
over k. It is a projective limit of the automorphism groups of finite Galois extensions
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E/k. We furnish Gy as usual with the profinite topology, which makes it a compact,
totally disconnected topological group. When k = [, there is for every n a unique
extension of degree n, which is Galois, and G, is isomorphic to Z ~ lim, Z/n,
topologically generated by the Frobenius automorphzsm x — xP.

At each prime p, let G, denote the local Galois group Gal(@p /Qp) with inertia
subgroup /,, which fits into the following exact sequence:

l—>Ip > G, —>Gp, —> L (1.1.1)

The fixed field of Q,, under I, is the maximal unramified extension Q' of Q , which
is generated by all the roots of unity of order prime to p. One gets a natural isomor-
phism of Gal(Q}/Q,) with G,. If K /Q is unramified at p, then one can lift the
Frobenius element to a conjugacy class ¢, in Gal(K /Q).

All the Galois representations considered here will be continuous and finite-
dimensional. Typically, we will fix a prime ¢, and algebraic closure Q; of the field
Q¢ of £-adic numbers, and consider a continuous homomorphism

pe : Gg — GL(Vp), (1.1.2)

where V; is an n-dimensional vector space over Q. We will be interested only in
those py that are unramified outside a finite set S of primes. Then p¢ factors through
a representation of the quotient group Gs := G(Qs/Q), where Qg is the maximal
extension of Q which is unramified outside S. One has the Frobenius classes ¢, in
Gs forall p ¢ S, and this allows one to define the L-factors (with s € C)

Ly(s, pe) =det(I — p,p~*|Ve) L. (1.1.3)

Clearly, it is the reciprocal of a polynomial in p~* of degree n, with constant term 1,
and it depends only on the equivalence class of p¢. One sets

L5(s, pe) = [ | LpGs. po)- (1.1.4)

PES

When py is the trivial representation, it is unramified everywhere, and L5(s, pe) is
none other than the Riemann zeta function. To define the bad factors at p in S — (£},

one replaces V¢ in (1.1.3) the subspace Vfl" of inertial invariants, on which ¢, acts.

We are primarily interested in semisimple representations in this article, which
are direct sums of simple (or irreducible) representations. Given any representation
pe of QQ, there is an associated semisimplification, denoted p?s, which is a direct sum
of the simple Jordan—Holder components of p¢. A theorem of Tchebotarev asserts
the density of the Frobenius classes in the Galois group, and since the local p-factors
of L(s, p¢) are defined in terms of the inverse roots of ¢,, one gets the following
standard, but useful result.

Proposition 1.1.5. Let p¢, p; be continuous, n-dimensional £-adic representations
of Gg- Then

/88

L¥ (s, pr) = L (s pr) = pp=pp -



1 Irreducibility and Cuspidality 7

The Galois representations p, which have finite image are special, and one can
view them as continuous C-representations p. Artin studied these in depth and
showed, using the results of Brauer and Hecke, that the corresponding L-functions
admit meromorphic continuation and a functional equation of the form

L*(s,p) = e(s, p)L*(1 — 5, p"), (1.1.6)
where p“ denotes the contragredient representation on the dual vector space, where
L*(s, p) = L(s, p)Loo(s, p), (1.1.7)

with the archimedean factor L (s, p) being a suitable product (shifted) gamma
functions. Moreover,

e(s, p) = W(p)N(p)* /2, (1.1.8)

which is an entire function of s, with the (non-zero) W(p) being called the root
number of p. The scalar N(p) is an integer, called the Artin conductor of p, and
the finite set S which intervenes is the set of primes dividing N(p). The functional
equation shows that W(p)W(p") = 1,and so W(p) = £1 when p is selfdual (which
means p =~ p“). Here is a useful fact:

Proposition 1.1.9 ([T]). Let t be a continuous, finite-dimensional C-representation
of G, unramified outside S. Then we have

—ordy— L3(s, 1) = Homg, (1, 7).

Corollary 1.1.10. Let p be a continuous, finite-dimensional C-representation of Gg,
unramified outside S. Then p is irreducible if and only if the incomplete L-function
L5(s, p ® pV) has a simple pole at s = 1.

Indeed, if we set
7 :=p® p" =~ End(p), (1.1.11)

then Proposition 1.1.9 says that the order of pole of L(s, p ® pV) at s = 1 is the mul-
tiplicity of the trivial representation in End(p) is 1, i.e., iff the commutant Endg, (p)
is one-dimensional (over C), which in turn is equivalent, by Schur’s lemma, to p
being irreducible. Hence the corollary.

For general £-adic representations p¢, there is no known analogue of Proposi-
tion 1.1.9, though it is predicted to hold (at the right edge of absolute convergence)
by a conjecture of Tate when p, comes from arithmetic geometry (see [Ra4], Sec-
tion 1, for example). Tate’s conjecture is only known in certain special situations,
such as for CM abelian varieties. For the L-functions in Tate’s set-up, say of mo-
tivic weight 2m, one does not even know that they make sense at the Tate point
s = m + 1, let alone know its order of pole there. Things get even harder if p, does
not arise from a geometric situation. One cannot work in too general a setting, and
at a minimum, one needs to require p; to have some good properties, such as being
unramified outside a finite set S of primes. Fontaine and Mazur conjecture ([FoM])
that p¢ is geometric if it has this property (of being unramified outside a finite S) and
is in addition potentially semistable.
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1.2 Automorphic representations

Let F be a number field with adele ring Ar = Fy X Af r, equipped with the
adelic absolute value | - | = | - |a. For every algebraic group G over F, let
G(AF) = G(Fx) x G(AF,f) denote the restricted direct product [1, G(F,), en-
dowed with the usual locally compact topology. Then G (F) embeds in G(AF) as a
discrete subgroup, and if Z,, denotes the center of GL(n), the homogeneous space
GL(n, F)Z,(Ar)\GL(n, Ar) has finite volume relative to the relatively invariant
quotient measure induced by a Haar measure on GL(n, Ar). An irreducible repre-
sentation © of GL(n, Ar) is admissible if it admits a factorization as a restricted
tensor product ®, 7,, where each x, is admissible and for almost all finite places
v, m, is unramified, i.e., has a no-zero vector fixed by K, = GL(n, O,). (Here, as
usual, O, denotes the ring of integers of the local completion F, of F atv.)

Fixing a unitary idele class character w, which can be viewed as a character of
Z,(AF), we may consider the space

L*(n, ) := L*(GL(n, F)Z,(Ar)\GL(n, AF), ), (1.2.1)

which consists of (classes of) functions on GL(n, Af) that are left-invariant under
GL(n, F), transform under Z, (Ar) according to w, and are square-integrable mod-
ulo GL(n, F)Z(AF). Clearly, L?%(n, ) is a unitary representation of GL(n, Af)
under the right translation action on functions. The space of cusp forms, denoted
L%(n, w), consists of functions ¢ in L?(n, w) which satisfy the following for every
unipotent radical U of a standard parabolic subgroup P = MU:

/ p(ux) = 0. (1.2.2)
U(F)\U(AF)

To say that P is a standard parabolic means that it contains the Borel subgroup of
upper triangular matrices in GL(n). A basic fact asserts that L%(n, ) is a subspace
of the discrete spectrum of L2(n, ).

By a unitary cuspidal (automorphic) representation 7 of GL,(AF), we will
mean an irreducible, unitary representation occurring in L%(n, ). We will, by abuse
of notation, also denote the underlying admissible representation by «. (To be pre-
cise, the unitary representation is on the Hilbert space completion of the admissible
space.) Roughly speaking, unitary automorphic representations of GL(n, Afr) are
those which appear weakly in L?(n, @) for some w. We will refrain from recalling
the definition precisely, because we will work totally with the subclass of isobaric
automorphic representations, for which one can take Theorem 1.2.10 (of Langlands)
below as their definition.

If  is an admissible representation of GL(n, Afr), then for any z € C, we define
the analytic Tate twist of = by z to be

#(z) =& &[= s (1.2.3)



