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Preface

The volume contains the papers of participants of the International Conference
on Analysis and Geometry in honor of the 75th birthday of Yurii Reshetnyak, an
outstanding mathematician, a member of the Russian Academy of Science. His
prominent investigations of two-dimensional manifolds of bounded curvature and
mappings with bounded distortion are an outstanding contribution into the math-
ematics. The conference was held through August 23 — September 3, 2004 in
Novosibirsk.

The scope of the volume includes geometry of spaces with bounded curvature in
the sense of Alexandrov, quasiconformal mappings and mappings with bounded dis-
tortion (quasiregular mappings), nonlinear potential theory, Sobolev spaces, spaces
with fractional and generalized smoothness, and variational problems.

The volume reflects modern trends in these areas. Most articles are related
to Reshetnyak’s original works and demonstrate the vitality of his fundamental
contribution in some important fields of mathematics such as the geometry in the
“large”, quasiconformal analysis, Sobolev spaces, potential theory and variational
calculus.

The topics discussed in the volume can be subject of research for many mathe-
maticians. We hope that this volume will be a valuable source both for experts and
young researchers by providing them with a wealth of information, which otherwise
is scattered in literature or not published at all.

V. Burenkov, T. Iwaniec and S. Vodopyanov
September, 2006
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On an Extremal Property of Quadrilaterals in an
Aleksandrov Space of Curvature < K

[. D. Berg and I. G. Nikolaev

Dedicated to Yurii Reshetnyak on his 75th birthday

ABSTRACT. In this note we introduce an analog of the notion of the cosine
of the angle between two “directions”, possibly based at different points of
a metric space. For two pairs of points, we introduce the notion of the K-
quadrilateral cosine, cosq; in a space of constant curvature, it coincides with
the actual cosine of the angle between two tangent vectors under Levi-Civita
parallel translation. We prove that in an R domain of an Aleksandrov space
of curvature < K, we have |cosqg| < 1. Our principal result states: if,
for a quadrilateral with two non-adjacent “directed” sides of equal length in
an Ry domain, we have cosqg = —1 for those two sides, then the geodesic
convex hull of the quadrilateral is isometric to the geodesic convex hull of a
K-parallelogramoid in a two-dimensional space of constant curvature K.

1. Introduction

The distance between two tangent vectors to a Riemannian space, possibly
based at different points, is given by the Sasaki metric [S1, S2]. A generalization
of the Sasaki distance to general metric spaces was given in [N1, N2]. The starting
point of our definition of the Sasaki metric in an abstract metric space is the
quadrilateral cosine. We will keep the notation u = AB for an ordered pair (A, B)
in a metric space (M, p). If Q = {A, B,C, D} is a quadruple of points of M,
A # B, C # D, then we define the quadrilateral cosine by

p*(A, D) + p*(C, B) — p*(A,C) — p*(B, D)
2p(A, B)p(C, D) ’

which equals the angle between vectors AB and C_D) in Euclidean space.

In a general metric space, the quadrilateral cosine can be greater than one. In
our paper [BeN], we have shown that the condition of | cosq| being not greater
than one is closely related to the nonpositiveness of the curvature of the metric
space in the sense of A. D. Aleksandrov. In particular, in an Ry, domain of an

cosq(ﬁ, C—l))) =

1991 Mathematics Subject Classification. Primary 53C20; Secondary 53C45, 53C24, 51K10.
Key words and phrases. Aleksandrov space of curvature < K, K-quadrilateral cosine, planes
of curvature K, convex hull.
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Aleksandrov space of nonpositive curvature, |cosq| < 1 and if, for some quadruple,
cosq = 1, then the geodesic convex hull of that quadruple is either isometric to a
Euclidean trapezoid or to a segment of straight line.

In this paper, we prove similar results for Aleksandrov spaces of curvature
bounded from above by K. We introduce the K -quadrilateral cosine. We prove
that in an Rx domain of a space of curvature < K, the K-quadrilateral cosine does
not exceed 1 in absolute value.

We call a quadruple Q@ = {A, B, P, P’} of distinct points in a metric space
(M, p) a K-parallelogramoid if cosqy (H’,Eﬁ) = —1 and p(A, P) = p(B,P').
In a Riemannian space of constant curvature, our definition of the parallelogramoid
is slightly different from that of the classical Levi-Civita parallelogramoid [C, Sec.
229].

The main theorem of this paper is an extremal theorem stating that the geodesic
convex hull of a K-parallelogramoid in an Rx domain of a space of curvature < K is
isometric to the geodesic convex hull of a K-parallelogramoid in a two-dimensional
space of constant curvature K.

2. Aleksandrov space of curvature < K

A. D. Aleksandrov introduced spaces of curvature < K in his papers [A1, A2].
A metric p of the metric space (M, p) is called intrinsic, if for every P,Q € M,

p(P.Q) = inf{£,(C)},

where inf is taken over all curves £ joining the points P and @, and £, (£) is the
length of £ measured in the metric p.

A curve L in a metric space (M, p) joining a pair of points A, B is called a
shortest arc if its length is equal to p (4, B).

A metric space is said to be geodesically connected if each pair of points in it
can be joined by a shortest arc.

A configuration consisting of three distinct points (vertices) and three shortest
arcs joining these points pairwise (sides) is called a (geodesic) triangle. We will
use a convenient notation of Euclidean geometry ABC or AABC to denote the
triangle 7, and AB, BC and AC to denote its sides and AB, BC, AC to denote
the corresponding lengths. The perimeter p (7) of a triangle 7 = ABC' is the sum
AB+ BC + AC.

The K-plane Sk is the Euclidean plane if K = 0, the open hemisphere of
radius 1/v/K if K > 0 and the Lobatchevskii plane of curvature K, if K < 0. The
definition of n-dimensional K-space S is similar.

If T = ABC is a triangle in a metric space, its isometric copy in the K-plane
is the triangle 75 = AX BKXCX in Sk having the same side lengths as 7:

AB = AKBX, AC = AKCK and BC = BXKCK.

If K > 0 we require that the perimeter of 7 be less than 27r/\/l?.

Let £ and N be two shortest arcs with a common starting point O in a metric
space (M, p). Let X € Land Y € N, where X # O and Y # O. Set z = OX and
y=O0Y. Let TK = OK XXY K be the isometric copy of the triangle 7 = OXY in
the K-plane. Then 7%, (2, y) denotes the angle of the triangle 7X at its vertex OX.
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The upper angle between the curves £ and N is defined by
a(L,N)

lim  ~Y .
_lim ey (2,y)

In a metric space (M, p), the excess of a triangle 7 = ABC is defined by
S(T)=a+pB+7—m.
The excess of T with respect to K is
0x(T) = @+ B+7) — (ax + Br + k),

where ok, Bk, 7k are the corresponding angles of an isometric copy 7% of the
triangle 7 in the K-plane.

An Rg domain (also known as a CAT (K) space) is a metric space with the
following properties:

(i) Rk is a geodesically connected metric space.

(ii) If K > 0, then the perimeter of each triangle in R is less than 27 /vVK.
(iii) Each triangle in Rx has nonpositive excess with respect to K:

5k (T) < 0.

A metric space (M, p) is a space of curvature < K in the sense of A. D. Alek-
sandrov, if each point of M is contained in some neighborhood that is an Ry
domain.

We recall the following fundamental properties of spaces of curvature < K.

ANGLE COMPARISON THEOREM [A2]: the upper angles @, 3,75 of an arbitrary
triangle T in Ry are not greater than the corresponding angles ay, Bk and Vi of
the triangle TX on Sk, i.e.,

a<oak,B < Bk, < k-

K-CONCAVITY [A2] (also known as CAT(K)-inequality): let X,Y be points
on the sides AB and AC of the triangle T = ABC in a domain Rg and let
X" e AKBX and Y' € AKCK be points on the sides of the corresponding isometric
copy TH = AKBKCK in Sk such that AKX’ = AX, and AKY' = AY. Then
XY < X'Y".

These results were established by A. D. Aleksandrov in the 1950’s.

In 1968 Yu. G. Reshetnyak proved a far reaching generalization of K-conca-
vity [R]. Let £ be a closed curve in a metric space (M, p) such that £, (£) < 2r/vVK
if K > 0. Let V be a convex domain in Sk with the bounding curve N'. We say
that V majorizes the curve L if there is a non-expanding mapping of the domain
V into M that maps N onto £ and preserves arc length. The domain V is called
the majorant for L.

RESHETNYAK’S MAJORIZATION THEOREM: In an Rk domain, for any recti-
fiable closed curve L whose length is less than 2w/ K when K > 0, there is a
convex domain in Sk that majorizes L.

3. K-quadrilateral cosine

By definition, the 0-quadrilateral cosine, cosq, is just cosq. In this section, we
introduce the notion of the K-quadrilateral cosine, cosqy, for K # 0.
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First we describe the K-quadrilateral cosine in K-space. Consider a quadruple
Q = {A, B, P,Q} of points, A # P and B # Q, in S%. Let

AP =z, BQ=vy, AB=a, PQ=0b, PB=d and AQ = f.
Consider two shortest arcs AP and BQ. Let
&= exp‘,}1 (P)/AP and (= exp,}1 (Q)/BQ.
Then, by definition,
— —
cosqg (AP, BQ) = cos £ (¢, £"),

where the unit tangent vector £ at the point B is parallel in K-space to the unit
tangent vector £ along the shortest arc BA.

The following lemma expresses cosq (fTP, B_Cj) in terms of six distances z, y,
a, b, dand f. Let K # 0 and x = /|K]|. Set
. |k=VK if K >0,
K =
ik =1v—K if K <O.
Consider a triangle 7 = ABC in the K-plane. Set a = BC,b = AC, ¢ = AB and
a = LBAC. Notice that because

siniz = isinh(z), cos(iz) = coshx,
the cosine formula for both spherical and Lobatchevskii planes
COS Ka = COS K¢ cos kb + sin ke sin kb cos o if K >0,
cosh ka = cosh ke cosh kb — sinh kesinh kbcosa if K <0
can be written as

€OS Ka = cos K¢ cos kb + sin ke sin Kb cos av.

LEMMA 3.1.

(3.1)

—), = A - xy —y 2ic 2ag
cosq g (AP, BQ) = (cos kb + cos kx cos Ry cos kKa + cos kb cos kKa
— coskRrcoskf — coskdcos ky — cos kdcosKf) /(1 + cos ka) sin Kz sin Ry.

ProoF. We will use the following constructive interpretation of parallel trans-
lation in S% . Let O be the midpoint of the shortest arc AB and let P’ be a point
symmetric to the point P relative to O, that is, O is the midpoint of the shortest
arc PP’ as illustrated in Figure 1. It is readily seen that in K-space, the unit
vector &, tangent to AP, is parallel in S% to the unit tangent vector £” = —¢’ along
the shortest arc AB.

First, we calculate cos KOQ. By the cosine formula for the triangle ABQ),

coskf = cos Ra cos ky + sin ka sin Ky cos ZABQ,

whence
cos /ABQ = &= Ef —ACOS.ECi cosky
sin ka sin Ky
cos KOQ = cos EC—; cos Ry + sin Eg sin Ky cos ZABQ
(3.2)

_a __  coskf —coskacosky
= COSK—= COSKY + = s
2 2cosky
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<

FIGURE 1. Computation of cosqy in S%.

In a similar way, from triangles ABP and AOP, we find cos KPO:

cos kd — cos Ka cos KT

(3.3) cosRPO = cos R~ cos Rz + —
2 2cosky

Now, from the triangles OPQ and P’'PQ, we find cos KP'Q:
cos KOQ — cos kPO cos kb
sin Kk PO sin Kb
cos KP'Q = cos 2k PO cos kb + sin 2k PO sin kb cos ZOPQ
= cos 2k PO cos kb + 2 cos KPO (cos RKOQ — cos KPO cos kb)
= (2cos®* RPO — 1) cos &b + 2 cos PO (cos ROQ — cos RPO cos Rb)
= —cos kb + 2 cos kPO cos KOQ).

cos ZOPQ =

From the triangle QBP’, we get:

—cos kb + 2 cos kPO cos KOQ — cos KT cos Ky

cos ZP'BQ = —
sin Kz sin Ky
Hence,
cosqy (AP, BQ) = — cos ZP'BQ
(3.4) _ coskb + coskx cos Ry — 2cos K PO cos KOQ

sin K sin Ky
Consider separately the following term of the foregoing equation for cosqy. By
(3.2) and (3.3),
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N N N _a coskd — cosRkx coska
cos kPO cos kOQ = (cos KT cos n§ + )

2 cos 7%%

.a . coskf — coskacosky
X | cos 55 COSKY + .

2cosk§
Simplification of the first factor yields:

- _.a coskd— cosKT coska
COS KZ COS n§ +

2cosky

(1 + coska) coskx + cos Rd — cos Rz coska  cos Rz + cos kd

2coskg 2coskg
In a similar way,
coskKf —coskacosky  cosky + coskf
2cosk$ N 2cos Ry

~a
cos n§ cosy +

So,
2cos kPO cos KOQ

cos Kz cos Ky + cos Kz cos K f + cos Rd cos Ry + cos Rd cos R f
(14 cosRa) '

(3.5)

By (3.4) and (3.5),
cos Kb+ cos Kz cos Ry — 2 cos KPO cos KOQ
= cos kKb + cos Kz cos Ky
cos Kx cos Ry + cos Kz cos Kf + cos kd cos Ry + cos Rd cos K f

1+ coska
= (cos kb + cos kb cos Ka + cos KT cos Ry cos ka

—coskzcoskf — coskdcosky — coskdcoskf) / (1 + coska).
—_— =
Hence, the formula for cosqy (AP, BQ) follows. 0O

DEFINITION 3.2. Let (M, p) be a metric space and A, P, B,Q € M be such
that A # P,B # Q. Let p (A, B) < n/VK, when K > 0. If

(
p(A,P):as, p(BvQ):yv p(AvB)=a7
p(P,Q)=b, p(P,B)=d, p(A4,Q)=f and kr=+/|K|
then the K-quadrilateral cosine cosq (Z—Ig, BZ)}) is defined by (3.1), that is,

—_— =
cosq (AP, BQ) = [cos kb + cos Kz cos Ky cos Ka + cos kb cos ka
— cos Kz cos kf — cos rd cos ky — cos kd cos K f] /(1 + cos ka) sin Kz sin Ky,
if K >0, and
B
COSq g (AP, B Q) =[cosh kz cosh k f + cosh kd cosh ky + cosh kd cosh k f
— cosh kb — cosh kz cosh ky cosh ka

— cosh kb cosh ka] /(1 + cosh ka) sinh Kz sinh Ky,
if K <0.
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—f = —
REMARK 3.3. It is easy to see that 1£_im(J cosqg (AP, BQ) = cosq(AP, BQ).

REMARK 3.4. If A = B, then cosq (ﬁ, IC—))) = cos'yg'N (z,y), where £L = AP,
N =AQ and z = AP, y = AQ.

In conclusion, we state the following convenient form of the definition of cosqp.
—_—
LEMMA 3.5. Let K # 0. Then q = cosqg (AP, BQ) if and only if

(1 + cosRa) (cos Kb + cos Kz cos Ky — q sin Kz sin Ry)
= (cos Rz + cos kd) (cos Ky + cos K f).
In particular, cosqy (AP, BQ) = —1 if and only if
(1 + coska) [cos Kb + cos K (z — y)] = (cos Kz + coskd) (cos Ky + cosK f).
« = . . .
PROOF. Notice that q = cosqg (AP, BQ) is equivalent to the following equa-
tion:
q (1 + cosKa) sin Kz sin Ky = cos kb + cos Kz cos Ry cos Ka + cos kb cos Ka
— coskxcoskf — cos Rd cos Ky — cos kd cos K f.
By adding to both sides of the foregoing equation
(1 4 cos Ra)(— cos Kz cos Ky — cos kb),
we get:
(1+ coska) (qsin Kz sinky — cos kz cos Ky — cos kb)
= (1 + coska) (— cos Kz cos Ry — cos kb) + cos Kb + cos Kz cos Ky cos ka
+ cosKbcos ka — cos Kz cos K f — cos kd cos Ky — cos kd cos K f
— (coskx + cos Rd) (cos Ry + cosKf),

and the claim of the lemma follows. O

4. K-quadrilateral cosine in an R domain
In a metric space, |cosqy| can be greater than 1.

EXAMPLE 4.1. On the set R? we specify the norm ||(z,y)|1 = |z| + |y|. Let
p > 0;if K > 0, we assume that p < 7/VK. Let A = (0,u), P = (0, + 1),
B = (p,p) and Q = (p, u +t). Then

a=AB=pu, b=PQ=pu, d=BP=f=AQ=pu+t,
r=AP=y=BQ=t.
y (3.1),

— —
cosq (AP, BQ)

cosnu—#cos Ktcosku — 2cosntcosn(,u+t)+cos Kp — cos’ f-:(,u+t)

(1 + cos Ry sin® Rt
Because

cos Rt + cos? Rt cos R — 2cos Rt cos i (i + t) + cos® R — cos® R (p + t)

= (Rsin 2Ru + 2R sinRp) t + O(t?)
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Q

A B

a

FIGURE 2. L = APQBA.

and
(1 + cosRu)sin® &t = (1 + cos k) K22 + O(t?),
—_— —
we see that [ COSq f¢ (AP, BQ)[ can be arbitrarily large, for small t.

We prove the following

THEOREM 4.2. Let Q@ = {A, B, P,Q} be a quadruple of distinct points in an R
_——
domain, K # 0. If diam (Q) < m/2VK, when K > 0, then | cosqy (AP, BQ)| < 1.

ProoF. Consider the closed curve £ = APQBA in the Ry domain, as shown
in Figure 2. If K > 0, then the length of £ is less than 27 /v/K. By Reshetnyak’s
majorization theorem, there is a convex domain V CSk that majorizes £. Then
AV is a polygonal line £ = A"P'Q'B’' A’ made of shortest arcs A'P’, P'Q', Q'B’
and B’ A" in Sk such that a = A'B’, 2 = A'P', b= P'Q’ and y = B’Q’. Because V
majorizes £, we also have:

d<d =PB and f<f =AQ".
We readily see from the definition of cosqy that
CoSq (A_};, B—Q)) < cosq (A'P',B'Q").
Because V CSy, by Lemma 3.1, we have ‘Coqu(A’P’,B’Q’)‘ < 1. So, the in-
equality
COSq g (ﬁ BQ) <1
follows.

Now consider the closed curve N' = AQBPA in the Rx domain, as shown in
Figure 3. Notice that the length of £ is less than 27/v/K when K > 0. Let a convex
domain U C Sk be a majorant for NV with the polygonal boundary A'Q'B'P’' A’
satisfying d = B'P' =d', f = AQ = f', . = AP’ =2’ and y = B'Q' = y'.
Because U majorizes N, we have:

a<a =A'B" and b<b =PQ.
We claim that

R A ——

coSq (ﬁ B—Cj) > cosqg (A'P', B'Q").
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b

A B

a

FIGURE 3. N = AQBPA.

Indeed, let q = cosq, (ﬁ’ BT)) and q' = cosqy (AP, B'Q"). For definiteness, set
K > 0. Then, by Lemma 3.5,

(1 + cos ka)(cos kb + cos kx cos ky — qsin K sin Ky )

= (cos kx + cos kd) (cos Ky + cos K f)

= (1 4 coska') (cos kb + cos kx cos ky — q’ sin kx sin Ky).
Because coska' < coska, we see that (1 + coska)/(1+ coska’) > 1. Hence, by
recalling the inequality b < b’, we have:

cos kb + cos Kz cos Ky — q' sin Kz sin Ky

cos kb + cos K cos Ky — qsin kKT sin ky

cos kb’ + cos kx cos Ky — q' sin kx sin Ky

>1
T coskb+ coskxcosky —qsinkrsinky

whence q' < q follows. The case of negative K is treated in a similar way.
To complete the proof of the theorem we observe that

(*05(11\-(:1_13, B—Q) > COSQK(A/P), B'Q') > -1. O

5. Lemma concerning the parallelogramoid

LEMMA 5.1. Let K # 0 and let (M, p) be a metric space with diameter less
than ﬁ/\/—]T if K > 0 and such that |cosq,\- (PQ. RS)’ < 1, for every quadruple of

distinct points {P,Q,R,S} in M. Let Q = {A, B, P, P’} be a K-parallelogramoid
in M: that is, Q is a quadruple of distinct points in M such that AP = BP' and
cosq (AP, BP') = —1. Then
=F ¥ —_— — sy —
cosqy (PA,P'B) = —1, cosqy (PB,P'A) = —1, cosq (BP,AP') = —1
and PB = AP’
(see Figure 4).
PRrROOF. Let
r=AP=BP', a=AB, b=PP, f=AP and d=BP

as shown in the sketch. By Lemma 3.5, cosqy, (ﬁ BP') = —1 is equivalent to
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P

!

P

FIGURE 4. Parallelogramoid.

(coska+ 1) (coskb + 1) = (cos Kz + cos K f) (cos kx + cos Rd).
Hence, by Lemma 3.5, coqu(P—A, P'B) = —1, also.
Now we turn to the proof that cosq,\-(P—B’.P’A) = —1 and PB = AP'. By
definition,
—_— - e . - e
cosqg (PB, P'A) = {[cosKa + coskbcos ka — cosk f cos R
— cos kd cos Eaz] + cos Rbcos R f cos Rd — cos? Rz} / (14 coskb)sink fsinkd.

Because cosq (E, BP' ) = —1, we have

cos ka + cos kb + cos Ka cos Kb — cos Kx cos k f — cos Rz cos kd — cos R f cos kd

= —sin? Rz.
So, cos ka + cos Kb cos Ka — cos R f cos Rz — cos Rd cos ke = — sin? R +cos & f cos Rd —
cos kb. Hence,
—
cosqy (PB, P'A)
—sin? Rx 4 cos R f cos Rd — cos kb + cos Rbcos & f cos Rd — cos® Rz
(1 4 coskb)sink f sin kd

—1 + coskf coskd
sink f sin kd

It is not difficult to see that
—, — s
cosqg (PB,P'A) < —1 and cosqyg (PB,P'A)=-1 <= f=d.



