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Preface

In general it is difficult to obtain analytic approximations of nonlinear prob-
lems with strong nonlinearity. Traditionally, solution expressions of a nonlin-
ear problem are mainly determined by the type of nonlinear equations and the
employed analytic techniques, and the convergence regions of solution series
are strongly dependent of physical parameters. It is well known that analytic
approximations of nonlinear problems often break down as nonlinearity be-
comes strong and perturbation approximations are valid only for nonlinear
problems with weak nonlinearity.

In this book we introduce an analytic method for nonlinear problems in
general, namely the homotopy analysis method. We show that, even if a non-
linear problem has a unique solution, there may exist an infinite number of
different solution expressions whose convergence region and rate are depen-
dent on an auxiliary parameter. Unlike all previous analytic techniques, the
homotopy analysis method provides us with a simple way to control and adjust
the convergence region and rate of solution series of nonlinear problems. Thus,
this method is valid for nonlinear problems with strong nonlinearity. More-
over, unlike all previous analytic techniques, the homotopy analysis method
provides great freedom to use different base functions to express solutions of a
nonlinear problem so that one can approximate a nonlinear problem more ef-
ficiently by means of better base functions. Furthermore, the homotopy anal-
ysis method logically contains some previous techniques such as Adomian’s
decomposition method, Lyapunov’s artificial small parameter method, and
the d-expansion method. Thus, it can be regarded as a unified or generalized
theory of these previous methods.

The book consists of two parts. Part I (Chapter 1 to Chapter 5) deals
with the basic ideas of the homotopy analysis method. In Chapter 2, the ho-
motopy analysis method is introduced by means of a rather simple nonlinear
problem. The reader is strongly advised to read this chapter first. In Chapter
3, a systematic description is given and a convergence theorem is described for
general cases. In Chapter 4 we show that Lyapunov’s artificial small parame-
ter method, the §-expansion method, and Adomian’s decomposition method
are simply special cases of the homotopy analysis method. In Chapter 5 the
advantages and limitations of the homotopy analysis method are briefly dis-
cussed and some open questions are pointed out. In Part II (Chapter 6 to
Chapter 18), the homotopy analysis method is applied to solve some non-
linear problems, such as simple bifurcations of a nonlinear boundary-value
problem (Chapter 6), multiple solutions of a nonlinear boundary-value prob-
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lem (Chapter 7), eigenvalue and eigenfunction of a nonlinear boundary-value
problem (Chapter 8), the Thomas-Fermi atom model (Chapter 9), Volterra’s
population model (Chapter 10), free oscillations of conservative systems with
odd nonlinearity (Chapter 11), free oscillations of conservative systems with
quadratic nonlinearity (Chapter 12), limit cycle in a multidimensional sys-
tem (Chapter 13), Blasius’ viscous flow (Chapter 14), boundary-layer flows
with exponential property (Chapter 15), boundary-layer flows with algebraic
property (Chapter 16), Von Kdrmén swirling viscous flow (Chapter 17), and
nonlinear progressive waves in deep water (Chapter 18). In Part II, only
Chapters 14, 15, and 18 are adapted from published articles of the author.
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PART 1

BASIC IDEAS

The way that can be spoken of is not the constant way;
The name that can be named is not the constant name.

Lao Tzu, an ancient Chinese philosopher
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Introduction

Most phenomena in our world are essentially nonlinear and are described by
nonlinear equations. Since the appearance of high-performance digit comput-
ers, it becomes easier and easier to solve a linear problem. However, generally
speaking, it is still difficult to obtain accurate solutions of nonlinear problems.
In particular, it is often more difficult to get an analytic approximation than
a numerical one of a given nonlinear problem, although we now have high-
performance supercomputers and some high-quality symbolic computation
software such as Mathematica, Maple, and so on. The numerical techniques
generally can be applied to nonlinear problems in complicated computation
domain; this is an obvious advantage of numerical methods over analytic ones
that often handle nonlinear problems in simple domains. However, numerical
methods give discontinuous points of a curve and thus it is often costly and
time consuming to get a complete curve of results. Besides, from numerical
results, it is hard to have a whole and essential understanding of a nonlinear
problem. Numerical difficulties additionally appear if a nonlinear problem
contains singularities or has multiple solutions. The numerical and analytic
methods of nonlinear problems have their own advantages and limitations, and
thus it is unnecessary for us to do one thing and neglect another. Generally,
one delights in giving analytic solutions of a nonlinear problem.

There are some analytic techniques for nonlinear problems, such as per-
turbation techniques [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] that are well known
and widely applied. By means of perturbation techniques, a lot of impor-
tant properties and interesting phenomena of nonlinear problems have been
revealed. One of the astonishing successes of perturbation techniques is the
discovery of the ninth planet in the solar system, found in the vast sky at a
predicted point. Recently, the singular perturbation techniques are considered
to be one of the top 10 progresses of theoretical and applied mechanics in the
20th century [13]. It is therefore out of question that perturbation techniques
play important roles in the development of science and engineering. For fur-
ther details, the reader is referred to the foregoing textbooks of perturbation
methods.

Perturbation techniques are essentially based on the existence of small or
large parameters or variables called perturbation quantity. Briefly speaking,
perturbation techniques use perturbation quantities to transfer a nonlinear
problem into an infinite number of linear sub-problems and then approximate
it by the sum of solutions of the first several sub-problems. The existence of
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perturbation quantities is obviously a cornerstone of perturbation techniques,
however, it is the perturbation quantity that brings perturbation techniques
some serious restrictions. Firstly, it is impossible that every nonlinear problem
contains such a perturbation quantity. This is an obvious restriction of pertur-
bation techniques. Secondly, analytic approximations of nonlinear problems
often break down as nonlinearity becomes strong, and thus perturbation ap-
proximations are valid only for nonlinear problems with weak nonlinearity.
Consider the drag of a sphere in a uniform stream, a classical nonlinear prob-
lem in fluid mechanics governed by the famous Navier-Stokes equation, for
example. Since 1851 when Stokes [14] first considered this problem, many
scientists have attacked it by means of linear theories [15, 16], straightfor-
ward perturbation technique [17], and matching perturbation method [18, 19].
However, all these previous theoretical drag formulae agree with experimen-
tal data only for small Reynolds number, as shown in Figure 1.1. Thus, as
pointed out by White [20], “the idea of using creeping flow to expand into the
high Reynolds number region has not been successful”. This might be partly
due to the fact that perturbation techniques do not provide us with any ways
to adjust convergence region and rate of perturbation approximations.

There are a few nonperturbation techniques. The dependence of pertur-
bation techniques on small/large parameters can be avoided by introducing
a so-called artificial small parameter. Tn 1892 Lyapunov [21] considered the
equation

dx
— = A(t) .
dt ) =

where A(t) is a time periodic matrix. Lyapunov [21] introduced an artificial
parameter € to replace this equation with the equation

dx

= =g A(t) x

and then calculated power series expansions over e for the solutions. In many
cases Lyapunov proved that series converge for ¢ = 1, and therefore we can
put in the final expression by setting ¢ = 1. The above approach is called
Lyapunov’s artificial small parameter method [21]. This idea was further em-
ployed by Karmishin et al. [22] to propose the so-called d-expansion method.
Karmishin et al. [22] introduced an artificial parameter d to replace the equa-
tion

P 4r=1 (1.1)

with the equation ;
x4 =1 (1.2)

and then calculated power series expansions over § and finally gained the ap-
proximations by converting the series to [3,3] Padé approximants and setting
d = 4. In essence, the f-expansion method is equivalent to the Lyapunov’s
artificial small parameter method. Note that both methods introduce an ar-
tificial parameter, although it appears in a different place and is denoted by
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different symbol in a given nonlinear equation. We additionally have great
freedom to replace Equation (1.1) by many different equations such as

S +r=1. (1.3)

As pointed out by Karmishin et al. [22], the approximation given by the
above equation is much worse than that given by Equation (1.2). Both the
artificial small parameter method and the d-expansion method obviously need
some fundamental rules to determine the place where the artificial parameter
€ or ¢ should appear. Like perturbation techniques, both the artificial small
parameter method and the d-expansion method themselves do not provide us
with a convenient way to adjust convergence region and rate of approximation
series.

Adomian’s decomposition method [23, 24, 25] is a powerful analytic tech-
nique for strongly nonlinear problems. The basic ideas of Adomian’s decompo-
sition method is simply described in §4.1. Adomian’s decomposition method
is valid for ordinary and partial differential equations, no matter whether
they contain small/large parameters, and thus is rather general. Moreover,
the Adomian approximation series converge quickly. However, Adomian’s
decomposition method has some restrictions. Approximates solutions given
by Adomian’s decomposition method often contain polynomials. In general,
convergence regions of power series are small, thus acceleration techniques are
often needed to enlarge convergence regions. This is mainly due to the fact
that power series is often not an efficient set of base functions to approximate a
nonlinear problem, but unfortunately Adomain’s decomposition method does
not provide us with freedom to use different base functions. Like the artificial
small parameter method and the d-expansion method, Adomian’s decompo-
sition method itself also does not provide us with a convenient way to adjust
convergence region and rate of approximation solutions.

In summary, neither perturbation techniques nor nonperturbation methods
such as the artificial small parameter methods, the J-expansion method, and
Adomian’s decomposition method can provide us with a convenient way to
adjust and control convergence region and rate of approximation series. The
efficiency to approximate a nonlinear problem has not been taken into enough
account, therefore it is necessary to develop some new analytic methods such
that they

L. Are valid for strongly nonlinear problems even if a given nonlinear prob-
lem does not contain any small/large parameters

2. Provide us with a convenient way to adjust the convergence region and
rate of approximation series

3. Provide us with freedom to use different base functions to approximate
a nonlinear problem.



