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Chapter 1

Introduction

1.1 Motivation and Background

Everyday more and more robotic vehicles are entering the real world. They are put to work
just about everywhere manual vehicles have been used in the past. From agriculture, and
mining operations, to inside factories and hospitals, they are increasing safety, efficiency, and
performance in all tasks otherwise considered to be too dull, dirty or dangerous for manual
labor.

Autonomous vehicles pose a number of unique problems in their design and implementation.
There is no longer a human-in-the-loop control scheme for the vehicle. The system itself must
close the loop from environment feedback to low-level vehicle control. Where a human operator
would normally analyze data feedback from telemetry, remote video, ete. and then decide the
best course of action, designers must now instrument the vehicle so that it can automate
these tasks. This requires the inclusion of internal state and environmental sensors, along with
onboard computers and software capable of processing the sensed information and planning the
vehicle’s action accordingly.

The first design step is the inclusion of different types of sensors onto the vehicle platform.
These sensors serve two general purposes. The first is to measure the state of the vehicle itself,
such as its position, orientation, speed, and perhaps also health monitoring information such
as comfort, temperature, pressure, etc (proprioception).

The second general purpose is the system’s ability to sense information originating outside
of itself (exteroception). It is the ability to sense one’s environment. Sensors such as cameras
and range detectors provide this information. The job of the system designer is to outfit
the autonomous vehicle with those sensors necessary and appropriate to provide the correct
environment feedback, thus allowing the system to decide how to act within it.

The second design step is giving the autonomous vehicle the ability to calculate how to
react to sensed internal and external information. This step requires the vehicle to have the
necessary processing and computational power along with the algorithms and software capable
of providing robust and stable control laws that guide the navigation of the robot.

Autonomous vehicles generate their own decisions, at the planning level, that govern how

13
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to drive the vehicle actuators. and cause the platform to move.

The problem of motion planning and control is that there must be consideration for the
motion constraints of any actuators involved or the vehicle platform itself. This is especially
an important issue for car-like vehicles and WMRs because they are subject to nonholonomie
constraints. This means that a vehicle driving on a surface may have three degrees of freedom:
translation in two dimensions and rotation in one. Consequently, the equations of motion de-
scribing the vehicle dynamics are non-integrable, which makes the problem much more difficult
to solve. This also means that car-like vehicles and WMRs are under actnated. In other words,
the number of control inputs to the system is less than the number of degrees of freedom in the
system'’s configuration space.

Many people nowadays spend a significant proportion of their time travelling and there
is an increasing demand for comfort. in private and public transportation. Three classes of
factors are considered in the analysis of travelling comfort: organizational, local and riding.
The riding comfort can be analysed in three different respects: dynamic factors - related to
vibration, shocks and acceleration; ambient factors - thermal comfort, air quality, noise, pressure
gradients, etc: spatial factors - dealing with the ergonomics of the passenger’s position.

Comfort is a complex definition that contains both physiological and psychological compo-
nents; this includes the subjective feeling of well being with the absence of discomfort, stress
and pain. Comfort not only consists of the absence of negative effects; it is also the experience
of positive aspects of comfort. Therefore, comfort includes a form of evaluation, i.e. it feels
well and has as its opposite, negative sensations. From interviews of vehicle passengers it is
obvious that ride comfort is dependent not only on the magnitude but also on the occurrence
of occasional shocks or transients.

Ride quality is a person’s reaction to a set of physical conditions in a vehicle environment,
such as dynamic, ambient and spatial variables. Dynamic variables consist of motions, measured
as accelerations and changes (jerk) in accelerations in all three axes (lateral, longitudinal and
vertical), angular motions about these axes (roll, pitch and yaw) and sudden motions, such as
shocks and jolts. Normally, the axes are fixed to the vehicle body. The ambient variables may
include temperature, pressure, air quality and ventilation, as well as noise and high frequency
vibrations, while the spatial variables may include workspace, leg room and other seating
variables. However, many use the term passenger comfort, ride comfort or average ride comfort
for ratings on a ride quality scale regarding the influence of dynamic variables. Normally,
higher rating on a ride quality scale means better comfort, whereas higher rating on a ride
(dis-)comfort scale means less comfort.

This is the nature of the problem undertaken in this work.

The theory of variable structure systems (VSS) opened up a wide new area of development
for control designers. Variable structure control (VSC), which is frequently known as sliding
mode control (SMC), is characterized by a discontinuous control action which changes structure
upon reaching a set of predetermined switching surfaces. This kind of control may result in

a very robust system and thus provides a possibility for achieving our goals. Some promising



