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Introduction

This environmental hydraulics treatise is made up of five volumes: Volume 1
describes the main physical processes and the physical domains where they can be
observed and measured.

Volume 2 is dedicated to mathematical modeling in hydraulics and fluvial
hydraulics.

In Volume 3, Chapters 1 to 7 constitute an introduction to numerical modeling,
and more particularly on finite difference and finite element discretization. It in no
way claims to constitute a treatise on the subject, but simply offers an overview of
the discretization methods used in the domains covered by this work, which range
from meteorology to shore morphodynamics. Chapters 8 to 13 deal with the finite
volume discretization method, the spectral approach, numerical schemes and
resolution methods.

Lastly, Volume 4 dealing with application examples completes Volume 3, along
with a final volume (Volume 5) on operational software.

This volume is made up of three parts and comprises 13 chapters:
Part 1: general considerations concerning numerical tools;
Part 2: discretization methods;

Part 3: introduction to data assimilation.

Set out below is a brief summary of each chapter.

Introduction written by Jean-Michel TANGUY.
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Part 1: General considerations concerning numerical tools

We will introduce a number of general concepts regarding models used in
engineering and in the operational-forecast domain and detail the ways of
constructing numerical models based on mathematical models.

Chapter outline
Part title Chapter | Chapter title Problematic issue
no.
General 1 Feedback on the Placing perspective on the notion of a
Considerations Notion of a Model | numerical model in the context of the
Concerning and the Need for study of physical phenomena.
Numerical Calibration Importance of calibration
Tools 2 Engineering Transposing a model used in
Model and Real- engineering into an operational
Time Model forecast context requires significant
computer-science and pairing work to
be performed
3 From Switching from a mathematical model
Mathematical to a numerical model requires
Model to approximations to be performed;
Numerical Model | discretization methods suitable for the
types of equations considered and
suitable numerical schemes need to be
used

What are the domain’s perspectives?

— Operational forecast services such as the national meteorological services and
flood forecasting services use real-time simulation tools based on numerical tools.
These tools need to be reliable, must not diverge and must be constantly
recalibrated with respect to the reality in the field, allowing civil security services
and the general public to be warned of the imminence of a significant unforeseen
event. Indeed, society’s requirements are evolving towards a strong demand to be
given preventative information as to risks, for there to be greater risk-anticipation
and to be kept out of danger: we can cite as an example the mandatory preventive
evacuation of the population of New Orleans when hurricane Gustav arrived in early
September 2008, following the catastrophic events of Katrina in late August 2005.

— Significant progress has been made in recent years with respect to numerical
modeling, underpinned by developments in computer science. This has enabled
complex geometries for very fine-scale studies to be taken into account. Choosing
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appropriate discretization methods and efficient schemes is a major challenge in
engineering today. The decision makers of today are demanding increasingly higher
standards with regard to technical choices and the use of tried and tested simulation
tools, and only the most effective tools will last.

Part two: Discretization methods

We will present the different numerical methods used within the domains
covered by this book. Unlike a number of works dealing with these problems, we
have opted not to remain focused on conceptual considerations, but to offer the
reader a means of understanding the fundamentals of each method and their
implementation. In particular, we explain the processing of boundary conditions,
which are often overlooked. This lends something of a computational aspect to our
presentations, but our aim is to provide the readers with the key principles, enabling
them to follow the developments step by step.

Chapter outline
Part title No. | Section title Problematic issue
Discretization | 4 Problematic Issues Highlighting of several difficulties
Methods Encountered relative to the behavior of computing
codes to demonstrate the importance of
having efficient numerical schemes
5 General Presentation Placing perspective on the main
of Numerical Methods | existing numerical methods
6 Finite Differences Succinct presentation of the method,
illustrated using the equation for the
diffusion of a pollutant
7 Introduction to the Detailed presentation of the method,
Finite Element Method | illustrated using the equation for swell
propagation
8 Presentation of the Detailed presentation of the method,
Finite Volume Method | illustrated using the equation for the
development of a water table
9 Spectral methods in This method is widely used in
Meteorology meteorological computing codes
10 | Numerical-Scheme Each discretization method requires a
Study numerical scheme to be chosen, which
must be studied to specify the behavior
of the final model.
11 | Resolution Methods A brief list of the resolution methods
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What are the domain’s perspectives?

— The recent developments of numerical methods are mainly led by industrial
applications. All of these methods, each with different origins, ultimately translate
into the resolution of matrix systems. There are numerous links between them, and
current research appears to be oriented towards methods, such as discontinuous
finite element methods, which present a combination of the advantages of each of
them.

— As we have mentioned on a number of occasions in the course of this book, the
numerical tools of tomorrow will need to be equipped with high-level processing
functionalities to offer the user the possibility of performing a reverse action at any
instant on the resolution cycle.

Part three: Introduction to data assimilation

This part presents the data assimilations methods that are most commonly used
by forecast services.

The concepts on which these methods are based can appear somewhat abstruse,
all the more so as the mathematical formulation is far from simple, but they
represent powerful tools that are indispensable to forecasters to enable their models
to adjust to the reality in the field.

We can expect these tools to undergo significant development in the coming
years.

Chapter outline
Part title Chapter | Chapter title Problematic issue
no.
Introduction 12 Data Assimilation General presentation of the various
to Data applications of the method:
Assimilation meteorology, hydrology and
hydraulics
13 Data Assimilation Detailed presentation of the
Methodology different numerical methods used
within the domains covered by this
book
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What are the domain’s perspectives?

— Data assimilation is a method undergoing rapid expansion within our field of
application. It is increasingly applied within the framework of computing-code
calibration and problematic issues encountered in real time. Meteorology was one
of the first disciplines to use these methods owing to the large quantity of
measurements and observations resulting from work in the field. It has arrived at
a level of maturity that means it can now serve as a reference to other disciplines
such as hydrology and hydraulics.

— These methods will also be used to install measurement systems that are to be
increasingly adapted to simulation models. In hydrology, for example, staff gauge
stations were installed in areas presenting high stakes, without the entirety of the
forecast chain being taken into account. The installation of new models will be
accompanied by an approach aimed at optimizing the measurement systems to be
assimilated. Likewise, it will be possible for gauging in rivers, very dangerous in the
event of a flood, to be considered in relation to hydrodynamic-model usage in order
to be able to optimize their installation and enable measurements at maximum
reservoir level to be taken in less exposed locations.
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