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PREFACE

The importance of partial differential equations in modeling phenomena in engi-
neering and the physical, natural, and social sciences is known by many students and
practitioners in these fields. I came to know this in my studies of atmospheric science.
A dependent variable, such as air temperature, is generally a function of two or more
independent variables (time and three spatial coordinates). Our desire to understand
and predict the state of natural systems, such as our atmosphere, frequently begins
with equations involving rates of change (partial derivatives) of these quantities with
respect to the independent variables. Once these equations have evolved from the
conceptual models of such systems, the next challenge is “solving” these partial
differential equations in qualitative and quantitative ways.

This book on solution techniques for partial differential equations has evolved over
the last six years and several offerings of an introductory course on partial differential
equations at Luther College. Students enter the course with a background typical of
most junior- or senior-level mathematics or physical science majors including two
to three calculus courses, an introductory linear algebra course, and a one-semester
course in ordinary differential equations. With this common foundation, the book
intends to strengthen and extend the reader’s knowledge and appreciation of the power
of linear spaces and linear transformations for purposes of understanding and solving
a wide range of equations including many important partial differential equations.
The notions of infinite dimensional vector spaces, scalar product, and norm lead to,
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perhaps, the reader’s initial introduction to Hilbert spaces through the theoretical
development of Fourier series and properties of convergence. These somewhat
abstract foundations are important aspects of developing an undergraduate’s more
general problem solving skill.

Most “real-world” partial differential equations, because of their nonlinear nature,
do not lend themselves to solution techniques of separation of variables, orthogonal
eigenfunction bases, and Fourier series solutions. Consequently, three different nu-
merical solution techniques are introduced in the final third of the book. The versatile
finite difference method is introduced first because of its relative understandable and
easy implementation. The finite element method is a popular method used by many
sanctioners in a variety of fields. Yet, it has a formidable theoretical foundation
including concepts of infinite-dimensional function spaces and finite-dimensional
subspaces. The third method for numerical solutions is the finite analytic method
wherein separation of variables Fourier series methods are applied to locally lin-
earized versions of the original partial differential equation.

Admittedly, I do not cover all of this material in a one-semester course. Usually,
Chapters 1 -5 are covered, and then topics are chosen from Chapters 6 and 7. Chapter
9 on finite differences is covered, and then either an introduction to finite elements
or the finite analytic method completes the semester.

Because Maple(©) is our campus computer algebra system of choice, a “library”
of Maple work sheets has been developed over the years. They are useful for solving
many of the exercises ranging from one-dimensional problems using Fourier se-
ries to multidimensional problems using the various numerical techniques. The
work sheets are available for users of the book through the textbook web site:
http://faculty.luther.edu/ bernatzr/PDE Text/index.html

RICHARD BERNATZ

Decorah, Iowa
January 29, 2010
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CHAPTER 1

INTRODUCTION

This chapter introduces general topics concerning partial differential equations (PDEs).
It begins with basic terminology associated with PDEs and then describes how PDEs
are classified. The PDEs common to scientific and engineering fields are introduced.
Next, the notion of initial and boundary value problems is introduced. The chapter
ends with a brief discussion of various solution techniques, with an introductory
example of the method of separation of variables. This example also serves as
motivation for developing the material on Fourier series in Chapter 2.

1.1 TERMINOLOGY AND NOTATION

Suppose u is a function of the spatial variable z and time ¢ so that u = u(z, t). Recall
that the partial derivative of u with respect to z is defined as

ou im u(z + h,t) — u(z, t)
ozx h—0 h

(1.1)
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2 INTRODUCTION

The partial derivative of u with respect to ¢ is defined in a similar way. Another way
of representing the partial of u with respect to z is

ou
g,
or
A partial differential equation is an equation involving one or more partial deriva-

tives of a dependent variable u. An example of such is the one-dimensional (1D)

diffusion equation
Uy = kg (1.2)

where u; represents the first partial of u with respect to t, k is a constant diffusion
coefficient, and u,, represents the second partial of u with respect to z. That is,

Ug (T + h,t) — ug(z,t)

Ugz = ’lllil}) h (1.3)
Some applications of PDEs may include a mixed partial, such as u,, where
- ug(Z,y + ht) —ug(z,y,t)
= 1.4
Uay = Jirg, h 44

with u = u(z, y,t).

It is common for the dependent variable u to be a function of three spatial variables
x, y, and z, as well as time ¢. The general form of a PDE for « in this case may be
expressed as

F(.’I:, Y, Z,t;u, uIE?uy’ Uz, utvuxzvu:t‘yvuy$’uyy’ ceey Utty - ) =0 (15)

1.2 CLASSIFICATION

The order of a PDE is the highest order derivative in Equation (1.5). The order of
the most common PDEs in science and engineering applications is two or less. In the
event that u = u(x, y), Equation (1.5) may be expressed as

Aty + Bugy + Cuyy + Dug + Euy + Fu = Q (1.6)

The PDE is said to be linear if each coefficient A — @ is at most a function of =
or y. Otherwise, the equation is nonlinear. A nonlinear equation is quasilinear if
it is linear in its highest order derivatives. Examples of PDEs with identification of
their order and linearity are given in Table 1.1. If the term Q on the right-hand side
of Equation (1.6) is zero, the PDE is said to be homogeneous. Otherwise the PDE is
classified as nonhomogeneous.

Suppose Equation (1.6) is linear. All equations of this form may be further
classified as parabolic, hyperbolic, or elliptic. Heat flow and diffusion problems
are typically described by parabolic forms of Equation (1.6). These equations have
coefficients A, B, and C satisfying the property B2 —4AC = 0. Hyperbolic forms of
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Table 1.1 PDEs: Order and Linearity.

PDE | Order | Linearity
UyUz + Uy = 2 Ist nonlinear
Uzz + auuy =0 Ist quasilinear
Tug + ouy = u® + 1 Ist | quasilinear
TUuz + ouy =1 Ist linear
Uzz + Uyy = cos(z +y) | 2nd linear
Ulzr + auf, =0 2nd nonlinear
Uzy + Uy = 0 2nd | quasilinear

the equation are those for which B2 —4AC > 0. Common equations of this type are
associated with vibrating systems and wave motion. Finally, when B? — 4AC < 0,
the equation is elliptic. Equations of this type typically represent steady-state (time
independent) phenomena.

If any of the coefficients A, B, or C are functions of x or y, the characterization
of the equation as parabolic, hyperbolic, or elliptic may be a function of location in
the zy-plane. As an example, consider the PDE

Y2 Ugs + VTUgy + Uyy + 2uy =0 (1.7)

The expression B? — 4AC is equal to x — 4y? for Equation (1.7). Consequently, the
equation is parabolic on the curve x = 4y2, hyperbolic for points (z,y) such that
x > 4y?, and elliptic for ordered pairs (z,y) that satisfy 4y > z and > 0. These
regions are depicted in Figure 1.1.

1.3 CANONICAL FORMS

For the case where the dependent variable u is a function of at most two independent
variables, as indicated in Equation 1.6, there are three common types of PDEs. The
Laplace equation is uz; + uy, = 0, and is elliptic on the entire zy-plane. The heat
equation has the form u; — uz, = 0, where the independent variable ¢ represents time
and z represents a spatial dimension. The heat equation is parabolic on the entire zy-
plane. The wave equation us; — uz, = 0 is hyperbolic on the entire zy-plane. Here,
the dependent variable u represents the displacement or wave height as a function of
time t and location z.

It can be shown that with a smooth, nonsingular change of coordinates, the sign of
the discriminant B2 —4AC will not change. Therefore, it is possible to make a change
of coordinate transformation in which an elliptic PDE is transformed to a Laplace
equation, a parabolic PDE is transformed to the heat equation, and a hyperbolic
equation is transformed into the wave equation form. Consequently, the Laplace,



