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Preface

Microorganisms are ubiquitous in the environment playing an important role in
biogeochemical cycling. However, their ability to metabolize xenobiotic com-
pounds has received much attention in recent years due to their environmental
persistence and toxicity. Hence, microbial degradation of xenobiotics is, today,
seen as both cost-effective and eco-friendly technology for removing these pol-
lutants by a process known as bioremediation. Earlier researchers have confirmed
that microbes are capable of degrading a wide range of organic pollutants.
However, process of biodegradation is generally very slow and hence, this process
may be accelerated by augmenting pure and mixed cultures of microorganisms in
both aerobic and anaerobic conditions. Metabolic intermediates formed in the
degradative pathways were also examined for their toxicity assessments using
bacteria and higher organisms. Many of degradative genes responsible for xeno-
biotic metabolism are present on plasmids, transposons or are grouped in clusters
on chromosomes. This indicates evolution of degradative pathways and makes the
genetic manipulation easier. Development of the transgenic microbial strains
highly capable of degrading xenobiotics is now possible through biotechnological
approaches. Besides, several catabolic enzymes involved in xenobiotic metabolism
have been isolated and characterized. A number of environmental factors,
including pH, temperature, bioavailability, nutrient supply and oxygen availability
have been shown to affect biodegradation process. These factors have to be
optimized to obtain an effective microbial treatment process for the industrial
organic wastes at bench and pilot scales. However, in the field scale treatment, all
environmental factors cannot be manipulated to enhance the degradation process.

To update the knowledge on bioremediation which is a natural attenuation
process, I present before you an edited volume on ‘Microbial degradation of
xenobiotics” which has focused on different aspects of microbial degradation of
xenobiotic compounds, like poly aromatics hydrocarbons, polychlorophenols,
polyurethane, dye containing wastewater, water soluble polymers, azo dyes,
explosives, chloroorganic pollutants, styrene, trinitrophenol and high molecular
weight alkanes. These aspects have been discussed in 17 chapters contributed by
the leading scientists drawn from all over the world.
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Chapter 1
Microbial Degradation
of Polychlorophenols

Luying Xun

1.1 Introduction

Polychlorophenols are major environmental pollutants, and their degradation by
microorganisms has been extensively studied for the purpose of bioremediation.
Three different metabolic pathways for aerobic degradation of polychlorophenols
have been completely worked out, revealing the metabolic diversity for these
structurally similar compounds. Substituted quinols, rather than catechols, are
key metabolic intermediates of polychlorophenol biodegradation. Substituted
quinols and quinones are also called as p-hydroquinones and p-benzoquinones,
reflecting the reduced and oxidized forms. For example, tetrachloroquinol is the
same as tetrachloro-p-hydroquinone, and tetrachloroquinone is often referred as
tetrachloro-p-benzoquinone. Characterization of individual enzymes has led to
the discoveries of novel dechlorination mechanisms. The genes coding for
the enzymes have been cloned and sequenced, and the gene organization and
regulation suggest that recent gene recruitments have occurred for the degradation
of some polychlorophenols.

1.1.1 Sources of Polychlorophenols

Trichlorophenols can be naturally produced, but pentachlorophenol (PCP) is
anthropogenic in origin. Hoekstra et al. (1999) have reported the production of
2,4.6-trichlorophenol (2.4,6-TCP) and 2.4,5-trichlorophenol (2,4,5-TCP) as well as

L. Xun (3<)
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2 L. Xun

less chlorinated phenols from spiked Na’’Cl in soils of a Douglas fir forest.
However, tetrachlorophenols and pentachlorophenol (PCP) are not produced from
the spiked *’Cl after one year in situ incubation. There is no evidence of natural
production of PCP. PCP is manufactured either by phenol chlorination with
chlorine gas or alkaline hydrolysis of hexachlorobenzene, producing a technical
grade of PCP that contains other polychlorophenols as impurities (WHO 1987).
Merz and Weith first synthesized PCP in 1872 (Merz and Weith 1872). The
massive release of PCP into the environment is mainly associated with its use as a
wood preservative, a practice starting in the 1930s (Crosby 1981). PCP-treated
lumbers are commonly used for outdoor structures, but some have been used to
build wine cellars and log houses. The vapors of polychlorophenols released from
the building materials can contaminate wine, giving it a corky taste (Suckling et al.
1999), probably due to the formation of chloroanisoles (Coque et al. 2003). People
living in PCP-treated log houses have elevated blood levels of PCP over control
groups (Cline et al. 1989). Further, polychlorophenol derivatives are often used as
herbicides and fungicides. 2,4,5-Trichlorophenoxyacetate (2,4,5-T), a derivative of
2,4,5-TCP, is a potent herbicide and is a major ingredient of “Agent Orange” used
for defoliation during the Vietnam War in the 1960s (Firestone 1978). Prochloraz,
a derivative of 2,4,6-TCP, is an effective fungicide for plant pathogens (Birchmore
and Meneley 1979). Consequently, a wide usage of polychlorophenols and their
derivatives have resulted in environmental contamination.

The main sources of polychlorophenol contamination are from their production,
application and discharge. The previously uncontrolled disposal has resulted in a
widespread contamination of polychlorophenols, e.g. at least 415 locations of
former wood preserving facilities are contaminated with polychlorophenols
(Middaugh et al. 1994). Their hazardous nature has promoted many countries to
regulate their use. In the United States, the release of polychlorophenols requires
registration with the Environmental Protection Agency, and the data are published
in Toxic Release Inventory: Public Data Release (EPA 2006).

1.1.2 Toxicity of Polychlorophenols

Polychlorophenols are notorious for several reasons. First, they are harmful to all
life forms because they disrupt the integrity and function of biological membranes
(Cunarro and Weiner 1975; Escher et al. 1996). Second, their metabolites are also
toxic. Human uptake of polychlorophenols is rapid via three mechanisms: skin
absorption, inhalation, and ingestion (WHO 1986; Proudfoot 2003). High dose
leads to hyperthermia, convulsions, and rapid death. The effects of low dose are
unclear, resulting in elevated blood chlorophenol levels, which can be metabolized
to chloroquinols or conjugated to polychlorophenol glucuronides for renal
excretion (Uhl et al. 1986). The oxidation of chloroquinols and reduction of
chloroquinones lead to the formation of reactive oxygen species, causing DNA
damage (Dahlhaus et al. 1995) and other oxidative stresses (Wang et al. 2001).
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Third, technical-grade polyclorophenols contain impurities, e.g. chlorinated
dibenzo-p-dioxins and dibenzofurans, which are highly carcinogenic (Firestone
1978; Kaiser 2000). They are produced from polychlorophenols during manu-
facturing processes (Crosby 1981), and they can also be formed via biotransfor-
mation in soils (Hoekstra et al. 1999).

1.2 Microbial Degradation of Polychlorophenols

The most efficient and economical approach to the removal of low concentrations
of polychlorophenols from contaminated soils and aquifers is bioremediation
(Crawford and Mohn 1985; Lamar and Evans 1993; Miethling and Karlson 1996).
The position of the chlorine substitution and the number of chlorines influence
how the chlorophenols are degraded by microorganisms. Because of the presence
of six isomers of trichlorophenols, three isomers of tetrachlorophenols and one
pentachlorophenol, various microorganisms have evolved different strategies for
the degradation of selected isomers. Bacteria can degrade polychlorophenols under
both aerobic and anaerobic conditions, and fungi are able to aerobically metabolize
them.

1.2.1 Pentachlorophenol Degradation by Aerobic Bacteria

Chu and Kirsch (1972) reported the first aerobic PCP-degrading bacterium in
1972. Since then, numerous aerobic bacteria that degrade PCP have been
isolated from different regions around the globe. The early isolates were
originally assigned to various genera, such as Arthrobacter, Pseudomonas,
Flavobacterium, Sphingomonas, Rhodococcus, and Mycobacterium. The gram-
positive Rhodococcus spp. and Mycobacterium spp. have been reclassified as
Mycobacterium chlorophenolicum (Briglia et al. 1994; Haggblom et al. 1994).
All the gram-negative, PCP-degrading bacteria, previously known as
Arthrobacter, Pseudomonas, and Flavobacterium, were subsequently reclassified as
Sphingomonas chlorophenolica strains (Crawford and Ederer 1999; Takeuchi et al.
2001), but have been subsequently renamed as Sphingobium chlorophenolicum
strains (Takeuchi et al. 2001). A PCP-degrading Sphingomonas sp. strain UG30A is
related to S. chlorophenolicum strains, but remains as a Sphingomonas sp. (Habash
et al. 2009). A related psychrophilic PCP-degrader is Novosphingobium lentum MT1
(Tiirola et al. 2005). S. chlorophenolicum strains are the most frequently isolated
bacteria that degrade PCP; however, other PCP-degrading bacteria have also been
reported (Golovleva et al. 1992; Sharma et al. 2009).
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1.2.2 2,4,6-Trichlorophenol Degradation by Aerobic Bacteria

Although S. chlorophenolicum degrades both PCP and 2,4.6-TCP (Steiert et al.
1987), Azotobacter sp. GP1 (Li et al. 1991) and Ralstonia (ex. Pseudomonas)
pickettii (Kiyohara et al. 1992) use only 2,4,6-TCP as a sole carbon source. More
2,4,6-TCP degraders have since been identified and isolated: Cupriavidus necator
(ex. Ralstonia eutrapha) JMP134 (Clement et al. 1995), Sphingopyxis chilensis
(ex. Pseudomonas paucimobilis) S37 (Aranda et al. 1999), Aureobacterium sp.
C964 (Bock et al. 1996), Rhodococcus percolatus MBS1T (Briglia et al. 1996),
Sphingobium subarctica (Puhakka et al. 1995: Nohynek et al. 1996), Pseudomonas
sp., Agrobacterium sp. (Wang et al. 2000), Nocardioides sp. (Mannisto et al.
1999), Flavobacterium sp. and Caulobacter sp. (Mannisto et al. 1999). It appears
that the 2,4,6-TCP degrading ability is widespread among the soil bacteria.

1.2.3 2,4,5-Trichlorophenol Degradation by Aerobic Bacteria

Several bacteria are known to degrade 2,4,5-trichlorophenoxyacetic acid (2,4,5-T).
Burkholderia (ex Pseudomonas) cepacia AC1100, isolated from an enrichment
culture, is a gram-negative bacterium that uses 2,4,5-T as a sole carbon source for
the growth (Kilbane et al. 1982). The bacterium degrades 2,4,5-T with 2,4,5-TCP
as the first metabolic intermediate (Karns et al. 1983). Two other Burkholderia
spp. that degrade 2,4,5-T have recently been reported (Lii et al. 2003; Rice et al.
2005). A different 2,4,5-T degrader is Nocardioides simplex 3E that is a gram-
positive actinomycete, able to grow on 2,4,5-T as a sole carbon source (Golovleva
et al. 1990). This microorganism may have two pathways for 2,4,5-T degradation:
one with 2,4,5-TCP as the first metabolic intermediate, and the other with
dichlorohydroxyphenoxyacetate as the first metabolic intermediate. Since 2.4,
5-TCP degradation is an integral part of 2,4,5-T degradation, the characterized
pathway for 2,4,5-T degradation is reviewed here.

1.2.4 Anaerobic Degradation of Polychlorophenols

Microorganisms also degrade polychlorophenols under anaerobic conditions.
Reductive dechlorination of PCP to tetrachlorophenols, trichlorophenols, dichlor-
ophenols, and monochlorophenols was first observed in anaerobic paddy soils in the
1970s (Ide et al. 1972). The degradation has been confirmed by studies with
enrichment cultures and bacterial isolates. An anaerobic bacterial consortium
completely dechlorinates PCP to phenol and then mineralizes the produced phenol
(Mikesell and Boyd 1986). Desulfitobacterium frappieri converts PCP by sequential
reductive dehalogenation to 3-chlorophenol (Bouchard et al. 1996). These anaerobic
bacteria use polychlorophenols as terminal electron acceptors for anaerobic
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respiration to produce less substituted chlorophenols and phenol (Crawford and
Mohn 1985), and these phenols are further degraded by other organisms in
enrichment cultures or in the environment (Mikesell and Boyd 1986). Progress has
been made towards understanding the biochemistry and genetics of reductive
dechlorination of polychlorophenols (Boyer et al. 2003; Bisaillon et al. 2010).

1.2.5 Fungal Degradation of Polychlorophenols

Fungal degradation of PCP was reported as early as 1960s (Duncan and Deverall
1964), and the non-specific breakdown of PCP by fungal laccase, tyrosinase,
and peroxidase was implied (Lyr 1963). Research on fungal degradation of
polychlorophenols has progressed rapidly since then, especially with white-rot fungi
(Reddy et al. 1998; Reddy and Gold 2000). The metabolic pathways of 2,4,6-TCP
and PCP degradation have been studied with cell extracts of white-rot fungus
Phanerochaete chrysosporium (Reddy et al. 1998; Reddy and Gold 2000), and a
glutathione conjugate reductase involved in PCP degradation has been purified and
characterized (Reddy and Gold 2001). Phanerochaete spp. have been used for the
removal of PCP from contaminated soils (Lamar and Dietrich 1990; Lamar and
Evans 1993) and for the disposal of PCP-treated woods (Lamar and Dietrich 1992).

1.3 Biochemistry of Polychlorophenol Degradation

The aerobic breakdown of aromatic compounds starts with monooxygenases or
dioxygenases that introduce hydroxyl groups into the aromatic rings. Many aromatic
compounds, including phenol, benzene and anthranilate, are converted to catechol
or substituted catechols. Then intradiol or extradiol catechol dioxygenases break the
aromatic rings to produce aliphatic compounds, which are further channelized into
the tricarboxylic acid cycle for the complete mineralization (Harwood and Parales
1996). However, polychlorinated phenols are converted to substituted quinols
before ring-cleavage: S. chlorophenolicum L-1 (ex. S. chlorophenolicum ATCC
39723) metabolizes PCP to 2,6-dichloroquinol (Cai and Xun 2002), C. necator
JMP134 converts 2,4,6-TCP to 6-chlorohydroxyquinol (Louie et al. 2002), and
B. cepacia AC1100 channels 2.4,5-TCP to hydroxyquinol (Zaborina et al. 1998).

1.3.1 Pentachlorophenol Metabolic Pathway
of S. Chlorophenolicum L-1

PCP degradation pathways have been thoroughly investigated in S. chlorophenolicum
L-1 and partially studied in Mycobacterium chlorophenolicum. Studies with cell



