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PREFACE

Problems in combinatorial analysis range from the study of finite
geometries, through algebra and number theory, to the domains of com-
munication theory and transportation networks. Although the questions .
that arise are all problems of arrangement, they differ enormously in the
superficial formiin which they arise, and quite often intrinsically, as well.

Perhaps the greatest discrepancy is between the discrete problems involving
‘the construction of designs and the continuous problems of linear in-
equalities. Nevertheless, in a number of the papers that are presented a
basic unity of the whole theory is brought to light. For example, Alan
Hoffman has shown that many problems of discrete choice and arrangement
may be solved in an elegant fashion by means of recent developments of the
theory of linear inequalities, a continuation of work of Dantzig and Fulker-
* gon. Similarly, Robert Kalaba and Richard Bellman have shown that a
variety of combinatorial problems arising in the study of scheduling and
transportation can be treated by means of functional equation techniques.
Marshall Hall has observed that the solution of a problem in arrangements,
in particular, the construction of pairs of orthogonal squares, is precisely
equivalent to solving a. certain equation for a matrix with nonnegative real
entries. :

A very challenging area of research which is investigated in a number of
the papers that follow is that of using a computer to attack combinatorial
questions, both by means of theoretical algorithms and by means of
~ sophisticated search techniques. Papers by Paige and Tompkins, Walker,
Gerstenhaber, Flood, Gleason, Lehmer, Swift, Todd, and Gomory, discuss
versions of this fundamental problem.

Following the manner in which the Symposium was divided into four
~ sessions, the Proceedings are divided into four sections. These are:

I. Existence and construction of combinatorial designs.
11. Combinatorial analysis of discrete extremal problems.
III. Problems of communications, transportation and logistics.
IV. Numerical analysis of discrete problems.

What_is very attractive about this field of research is that it combines

" both the most abstract and most nonguantitative parts of mathematics with
the most arithmetic and pumerical aspects. It shows very clearly that

the discovery of a feasible solution of s particular problem may necessitate

enormous theoretical advances. Perhaps the moral of the tale is that the

division into pure and applied mathematics is certainly artificial and to the

detriment of the enthusiasts on both sides. Furthermore, the way in which
v
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apparently simple problems require a complex medley of algebraic, geo-
metric, analytic and numerical considerations shows that the traditional
subdivisions of mathematies are themselves -too rigidly labelled. There is
one subject, mathematics, and one type of problem, a mathematical problem.

'RICHARI.) BELLMAN,
The RAND Corporation

MarsuALL Hawz, Jr.,
\ California Institute
of Technology
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CURRENT STUDIES ON COMBINATORIAL DESIGNS
BY
MARSHALL HALL, J=r.

1. Introduction. Current Studies on Combinatorial Designs have taken
us into Number Theory, Group Theory, Matrix Theory, and to a certain
extent into the, theory of convex bodies. Number Theory and Group
Theory have been used almost from the beginning of the theory of Com-
binatorial Analysis, but the more recent uses have been of a different nature.

The nature of some of the earlier methods may be illustrated in the theory
of Steiner triple systems. A Steiner triple system is an arrangement of «
objects into triples in such a way that every pair of distinet objects occurs
in exactly one triple. It is triwial that » must be of the form 6k + 1 or
6k + 3. In 1859, six years after Steiner [21] had posed the problem,
Reiss [20] showed that systems exist for every such value. Reiss’s method
was a recursively constructive method. By a fairly complicated construc-

 tion he showed how, given a system with ¢ > 1 objects he could construct
one with 2¢ + 1 objects and another with 2f — 5. Starting with ¢ = 3 we
may obtain all possible values 6k + 1 and 6k + 3 recursively. A more
general recursive method of constructing Steiner triple systems is due to
E. H. Moore [18] who proved the theorem.

TreorEM. If there is a Steiner triple system of order ta containing a sub-
system of order ts, and if there is also a Steiner triple system of order t; > 1,
then we can construct a system of order t = ts + t1(tz — t3).

If 6k + 1 = p is a prime and r is a primitive root of p, then the sets of
residues mod p 4, ¢ + 7%, ¢ + 78+k, g = 0,.- -, k — 1, i = 0,---, 6k may be
shown to be a Steiner triple system. Steiner triple systems also admit a
composition, since if there are systems of orders #; and ¢s there is also a
system of order fif2. This is easy to see in the following way: Given
a Steiner triple system S, let us construct a quasi-group @ from the elements
of § by the rules (1) a2 = a and (2) if b # a and a, b, c'is the triple of §
containing a, b, put ab = c. @ may be characterized by the properties

a® = a, (@b)b = a. Then the direct product of two such quasi-groups has -
- the same property and this yields the composition rule.

In problems of enumeration, the theory of generating functions has been
used from the beginning, and is still of great value, particularly in the study
of problems of partitions. But I shall not concern myself here with this
branch of Combinatorial Analysis. The symbolic calculus so extensively
developed by MacMahon has been successful in giving formal algebraic
equivalents of many combinatorial problems, but I cannot think of any

1 '



2 - MARSHALL HALL, JR.

recent instance in which this approach has given either practical methods

for constructing designs or for proving theorems about them.

. For the greatest part, I shall speak of block designs. A block design is
an arrangement of » objects into b blocks, each consisting of % distinct

objects such that each object occurs in exactly r blocks and each pair of

objects occurs in exactly X blocks. The two following conditions on the five

parameters are elementary : ' :

(1.1) bk = vr, r(k — 1) = Mv — 1).

A Steiner triple system is a block design with £ = 3, A = 1. A symmefric
block design satisfies the further condition » = b, whence also k¥ = r. In a
symirnetric block design the value ¥ — A = n plays a central arithmetical
role. A symmetric block design with A = 1 is a finite projective plane,
its parameters being

. v=b=n+mn+1,
(1.2) r=k=mn+1,

' A=1

Here 7 is said to be the order of the plane.

2. Matrices and quadratic forms. Let ay,- -+, a, be the objects of a block -
design D and By,- -, By the blocks. Let us define incidence numbers ayj,
t=1...,0 4=1,--.,b, where aj; = 1 if a; € B; and ay; = 0 if a; ¢ B;.
Then the demgn is fully described by the v x b ‘incidence matriz,

(2.1) A= (a), t=1---,v, j=1,..,b
If AT is the transpose of 4, then the defining properties of the design imply -
(2.2) AAT = B = (r — M) + AS,

where [ is the » x v identity matrix and § is a v x v matrix consisting
entirely of 1’s. It is easy to evaluate the determinant of B.

(2.3) det B = (r — A)(r + (v — 1)A). _
If r = A then the design is the trivial one in which every block contains all

the objects. Otherwise r > A and B is non-singular. Sinte the rank of B
cannot exceed the rank of 4, we have

-

(2.4) bz, v

an inequality first proved by R. A. Fisher [8] by other means. Furthermore
if D'is a symmetric design b = v, k¥ = r and conditions (1.1) reduce to -

(2.5) kk — 1) = Ao — 1).
In this case k + (v — 1)A = k2, and of course

(2.6) det B = (det 4)z.
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" Here (2.3) and (2.6) show immediately tlhat'the following theorem holds:

TuEoREM 2.1. In a symmetric block design, if v is even then n = E— A
must be a square. \ ‘

For a symmetric design we find that the incidence matrix 4 is normal, i.e.
(2.7) ATA = AAT = B = nl + A8.

This expresses a duality in the design in particular the fact that in.a sym-
metric design any two distinet blocks have exactly A objects in common.
The matrix equation (2.2) has an alternate representation in terms of
quadratic forms. Let zi,---,%» be indeterminates and let us use the
incidence numbers a;; to define linear forms ’

(28) Iy = 3w

=1

Then (2‘.3) is equivalent to

29) LE+ B+ - +I8 = (r — N +- - +23) + Moy + - +5) '
3 ' =Q(x1:"'1 xv)- '

For a symmetric design (2.9) takes the form

(2.10) L2 + L& +---+ L} = n(af T I R 7 SRR o A
= Q(mlr" ":xﬂ)'

A major step in the study of Combinatorial Analysis was taken by Bruck
and Ryser [4] in 1949 when they introduced the matrix notation given here
and reasoned as follows: In (2.10) the linear forms L; have rational coeffi-
cients (indeed the integers 0 and 1) and hence (2.10) gives a rational repre-
gentation of the quadratic form @ by the form Lf +--- + L2. Thus the
deep Hasse-Minkowski criteria for the rational equivalence of quadratic

forms are applicable. Using this technique for finite projective planes,
they proved the following result:

TaEOREM 2.2. A mecessary condition for the cxistence of a finite projective
plane with n + 1 points on ¢ line is that ifn = 1,2 (mod 4) then n = a® + b2
for appropriate iniegers a and b.

This shows that finite projective planes do not exist for an infinite set of
values of n beginning with n = 6, 14, 21, 22 .... This result is in sharp
contrast to the results on Steiner triple systems, where every value of the
parameters consistent with the basic relations (1.1) is possible. The value
n = 6 had previously been shown impossible by Tarry [22] by straight-
forward enumeration.

Theorem 2.2 was generalized by Chowla and Ryser [6] to symmetric block

designs.
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Tagorem 2.3. I f a symmeiric design exists with parameters v, k, A and )

o=k — A then (1) for v even, n is a square and (2) for v odd, the equation

2% = na? + (—1)e-D/2)y2
8 aolvable in integers not all zero. L

A diﬁerent use was made of equation (2.9) by W. S. Connor [7]. If we
specify the first ¢ blocks of a design we have determined the first ¢ forms

: Ly,---, Ly of (2.9). Then we have

(211)  Li, 4+ B =Qy, ) LB —o - L =@

If there exists a design with these initial blocks, then Ly, - - -, Ly exist and
in particular the form Q* must be positive semi-definite. Hence a necessary
condition for the existence of a design with ¢ specified blocks is that @* be
positive semi-definite. Connor gives a test from this property in terms of a
determinant. Let the ¢ given blocks be B, - - -, B and let sy be the number
of objects common to B; and Bj for4,j = 1,---,¢. Form the matrix

(2.12) Ot = (C(j), i.’j = 1,- . .’t _
c = (r — k)r — A), cy= Me — 18y, 1 # J.

" Then the determinant of C; must satisfy

‘ (i) det |C;] 20 if t<b—wv,
(2.13) (i) det [Cs] =0 if t>b— o,
(iii) k(r)yb+otl(r — X)20-2-1 det Cp

\

is a perfect integral square if there is to exist a design with blocks By, - - -, B;.

* As one consequence he finds inequalities for the s;. He shows

(2.14) ;—[2Ak+r(r—h—k)]g8gg —-r+lc;|-)«.

For the symmetric designs we have r = k and (2.14) gives 8y = A, the
result previously noted, being equiyalent to the duality of the symmetric
designs and the normality of the incidence matrix 4 in (2.7). One of the
applications of this method was the proof of the following embedding
theorem by Hall and Connor [11]. :

TugorEM 2.4. A block design with parameiers v = 271t + 1),
b=2Yt+ )+ 2),r=t+2,k=1FA= 2 can be embedded in a symmeiric
block design withv = b = 2712 + 3t + 4),r =k =t + 2,2 = 2. \

This is the analogue, with A = 2 instead of A = 1 of the well known result
that an affine plane can be embedded in a projective plane by adjoining a
line at infinity. An example due to Bhattacharya shows the corresponding :
theorem for A = 3 to be false. Connor and others have applied his method

PO R O e == les Y Y d L N )
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CURRENT STUDIES ON COMBINATORIAL DESIGNS 5

to the study of partially balanced designs and other generalizations of block
designs. '

If we have t blocks By,- - -, B; as the initial blocks of a symmetric design
and if the obviously necessary condition s;; = A holds, then the matrix Cy
of (2.12) is identically zero and the Connor method gives no further informa-
tion. This seemed a little strange and Hall and Ryser [13] endeavored to-
find out more about this situation. The results obtained indicate that
indeed in the real field and more strongly, even in the rational field, no
further information is available beyond that of Theorem 2.3 and the con-
dition 8 = X. :The precise state of affairs is given by the following theorem :

THEOREM 2.5. (NORMAL COMPLETION THEOREM). Let v, k, A be iniegers
such that k(k — 1) = Xv — 1) and such that the conditions of Theorem 2.3
are satisfied. Let A; be a rational v x t matriz whose columns all sum to k,
and such that ATA, = (k — NI, + AS,, I, and S, being t x t matrices such
that I;is the identity and S; consisting entirely of 1’s. Then there exists a
rational v x v matriz A which has A; for its first t columns such that ATA =
AAT = (k — NI + AS.

Note that the hypothesis on 4. is certainly satisfied if this is the matrix
of blocks Bjy,---, By for which sy = A. This says that not only is there a
rational matrix 4 completing A; to give a solution of the quadratic con-
dition (2.9) but even a normal matrix 4 satisfying 474 = 4AT. One
corollary of this theoremn is that the existence of a rational matrix X satis-
fying
) XTX = (k — NI + AS

implies the existence of a rational 4 satisfying
ATA = AAT = (k — NI + AS.
A special case of this last result had been proved previously by Albert [1].

3. A problem in convex spaces. Suppose we are given two superposéd
n x n orthogonal squares. For n = 4 an example is:

11 22 33 44
23 14 41 32
34 43 12 21
42 31 24 13

In general we have an n x n square and each cell contains a first and a
second digit, chosen from 1 to =. '

The first digits and second digits separately are Latin squares, i.e. each of
1 to m occurs exactly once in each row and once in each column. Further-
more the squares are orthogonal i.e. in the superposed square the pa.lrs of
first and second digits occurring are all the combinations 11, 12,..., nn.
A pair of orthogonal squares may be regarded as representing four paralle!
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pencils in a finite affine plane with n2 points. For let each of the n2 cells
be associated with a point.

In the first pencil let there be n lines, the ith containing the points of the
ith row of the square. In the second let there be n lines each containing
the points, the jth containing the points of the jth column. For the third
pencil let the kth line, k£ = 1,- .., n consist of those points whose cells have
k as their first digit. For the fourth pencil let the tth line, ¢ = L--,m
consist of those points whose cells have ¢ as their second digit. Then
geometrically we have n? points and four sets of n lines such that

(1) Each line contains » points.

(2) Two lines of the same family are parallel.

(3) Two lines of different families have exactly one point in common.

(4) Through each of the n2 points there is exactly one line of each family.

For property (3) as respects the third and, fourth pencils, this is the
orthogonality condition. Our construction may easily be reversed so that
from four parallel pencils satisfying (1), (2), (3), (4) we may construct a pair
of orthogonal » x n Latin squares. Thus orthogonal squares are not only
interesting in themselves, but their existence is a necessary condition for the
existence of an affine plane (and so also projective plane) of order n when-
ever n =z 3. FEuler conjectured that orthogonal squares do not exist if
n = 2 (mod 4). Tarry [22] verified this for n = 6 by trial, but up to the
present no theorem on this exists! and the attempt to test n = 10 will be
discussed by Tompkins and Paige at this Symposium. Mann [17] has
shown that for » £ 2 (mod 4) two orthogonal squares exist. Thus there
exist two orthogonal 21 x 21 squares although there is no plane of order 21.

Here I formulate the existence problem in terms of real quadratic forms

in a way that leads to a number of problems on convex spaces.
" Let us take 4n variables associating n with each pencil z;,¢ = 1,--.,n
with rows; y;,j = 1,--., n with columns; 2, &k = 1,--., n with first digits
and we, t = 1,- - -, n with second digits. With the rth point P,, r = 1,..., n2
associate the linear form AT :

(3.1 ) Le = 2 + 9y + 2 + we

if P, is on the ith, jth, kth, tth lines of the respective pencils. Then

32) L2+ ILi+---+ Lh=Q :
=n(x§+.._.+x’2‘+y%+...+y§+z%+...+z,2‘+w%+...+w§)

+ 2 ayy + 2> mzk + 2D zo + 2> Y + 2 Y
(8] t,& ‘ 1t Ik - m Jst

+ 2 g Zyw?.

1 Note added in proof. R.C.Bose, 8. 8. Shrikhande and E. T. Parker have succeeded
in constructing pairs of n X n orthogonal squares for all # = 2 (mod 4), n = 10.
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The value of Q is easily determined fi‘pm the defining properties of the

~pencils. Conversely if Li,---, L2 are a selection of n2 of the nt forms of

(3.1) satisfying (3.2) then they determine a pair of n x m orthogonal squares.
(For » = 10 we have only to choose 100 of 10,000 linear forms.)

TaroreM 3.1. If for the @ of (3.2) we hdve .
(3.3) Q=Ut+--+ Uk "

where the Upm, m = 1,---, M are linear forms in the z, y, z, w with non-negative
coefficients, then each of Ui, - -, U is a scalar multiple of one of the n# forms

of (3.1).

Proof. In (3.3) each Un is of the form (3.4) Um = am%s, + bmys, +

© Cmzk, + dmWr,, where am, bm, ¢m, dm are non-negative, since if a U, contained

as many as two ’s (or ¥’s, 2’s, w’s) with positive coefficients, this would give
a positive cross product in U2, involving say z%,, r # 8 which cannot be
canceled by the remaining U?’s and yet is not present inQ. Of course a Un
might conceivably contain no x with a positive coefficient. Now consider
those m’s for which im = 7, jm = 8 and am > 0, bm > 0. Call T, this set
of m’s. Then, these being precisely those U,,’s for which U?Z gives a positive

term in wr, ¥s, we have

Z ambm = 1, me Tf",

- (3.5) z at, = A,,, meT,, .
> =B,meT,

“Now as )

(3.6) > (@m — bm)? 2 0me Ty
we have

(3.7) Ars — 2+ Brs20

or .
‘(3.8) o Ars + Bys = 2

with a strict inequality unless every term in (3.6) is 0.

L
(3.9) A, = 2 Ar,n =n
s=1 _
since the left hand side is 3 @2 for all values of m for which z;, = z, and there
isa yterm. Further there is a strict inequality if for any m we have zy, = ¥r
but no y term. Similarly '

(3.10) By = Bis = .

r=1
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.Combining (3.9) and (3.10)

(3.11) D (Ars + Br) S 202
) 78

But from (3.8) ‘

(3.12) > Ars + Bry = 202

7,8
Hence in all of (3.6)- - -(3.12) we must have strict equalities. In particular
am = bm for m € Ty, and for every U with a positive x term there is a positive
y term. Continuing we conclude that
(3.13) am = bm = Cm = dnp, m=1,---, M
proving the theorem.

We may say even more about (3.3).

THEOREM 3.2. In(3.3) M 2= n2 andif M = n2then U,,---, Un determine
a pair of orthogonal n x n Latin squares.

Proof. Let Um = am(xi,; + yj, + 2k, + wy, ). Bach U gives exactly 6
non-zero cross products zy etc. As @ has 6n? non-zero cross products we
must have M 2 n?. If M = n? then each of the 6n2 cross products zy
etc. must occur exactly once. Here from U,, we have the cross product
2037, y; = 2u; y; whence a, = 1in every case, and the U’s are L’s and
so yield orthogonal squares.

These theorems can be given a matrix formulation :

TrEOREM 3.3. Let A be a 4n x n2 matrix satisfying

nI 8 8 8
S oI 8§ S

T |
“ S S ol 8
S 8 8 =l

If A is non-negative then A is the incidence matriz for a pair of orthogonal
'Latin squares.

The existence problem considered here has aspects relevant to general

problems in the theory of convex spaces. The space S of -semi-definite
quadratic forms is a convex cone. So also is the space P of non-negative
quadratic forms. The quadratic forms arising in our combinatorial problems
are sums of squares of non-negative linear forms and this is again a convex
cone D. (learly D 8 N P, but it has been shown by Horn that for 5
or more variables D is a proper subspace of S N P. Each of 8 and P is
self-adjoint and the adjoint space of S N\ P is S U P. The adjoint space
_of D is the space N of quadratic forms non-negative for non-negative argu-
ments. Here N = 8 U P and the inclusion is proper for torms with 5 or
more variables by Horn’s result. Let us note that @ = n~2 > L2, L ranging
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over the n4 forms of (3.1). Theorem 3.1 éa.ys that a representative of @ as a
linear combination of extreme points of D is in fact a linear combination of -
. extreme points of a polyhedron, whose vertices are the squares of the n4
forms of (3.1). @/n?2isindeed the center of gravity of these points. Theorem
3.2 points out that the number of extreme points needed in the repre-
sentation of Q is vital to our problem. What is the nature of the points
given as combination of a limited number of extreme points? In a square
-the combinations of two extreme points are the edges and diagonals.

4. Group theory and designs. From the beginning one way of construct-
ing designs has been to take a group and find a design which has this as an
automorphism group (or collineation group using geometric terminology).
Occasionally the elements of the group itself form a design. Thus, given an
elementary Abelian group G of order 27, let us delete from G the identity.
Then the triples of elements of the form a, b, ab (i.e. a subgroup of order 4
with the identity deleted) form a Steiner triple S system on 2r — 1 elements.
Here S has as its automorphism group not @ itself, but 4(@) the group of
automorphisms of G. As is well known, A(@) is doubly transitive on §
and is of order (2r — 1)(27 — 2)-..(2r — 2r-1),

A result which may now be regarded as classical in the theory of projective
planes states that the existence of certain families of configurations is
equivalent to the existence of certain collineations. Specifically the validity
of the theorem of Desargues for all configurations with a given center and
axis is equivalent to the existence of all perspective collineations with that
center and axis. The analogue of this state of affairs has not been suffi-
ciently developed for designs in general. Let me however give one theorem
of this kind. :

TarorEM 4.1. The following two conditions are equivalent in a Steiner
triple system S:

(1) For every object a €S there is an involution os of S which fixes a and
interchanges an ob]ect b with ¢ if a, b, ¢ are a triple of S.

(2) Every pair of intersecting triples of S lies in a subsystem which is an
Sy, 1.e. a Steiner triple system with 9 objects.

Proof. Let us show that (2) implies (1). Let us designate an object of
Sas 1. We wish to show that «;, the permutation fixing 1 and interchanging
¢ with j if 1, 4, j are a triple of Sis a collineation of §. Clearly, «; maps onto
themselves all triples including 1. It remains only to show that a triple
not including 1 is also mapped onto a triple of 8 by «1. Let such a triple
be say 2, 4, 6 and let 1, 2, 3 be the triple including 1 and 2. Then by our
hypothesis 1, 2, 3 and 2, 4, 6 lie in an Ss. We readily see that this must
include k
- 2 4 6
(4.1)

[
[= 3 S\
3 Ov W
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The Sy is now easily completed and seen to be of the form

g 73 2 4 6 3 49 i
174 5 2 5 8 3 B 5 6 9
(4.2) 16 7 2 7 9 3 6 8
18 9

But then a3 = (1) (2,3) (4,5) (6,7) (8,9) and (2,4,6)e1 = 3,5,7 which isa triple.
Thus property (2) implies property (1).
On the other hand let us assume property ( ) and let 1,2,3; 1,4,5 be two

' intersecting triples of §. Then we certainly have triples

1 2.3 2 4 8
(4.3) 1 4 5
1 6 7

~and a; = (1) (2,3) (4,5) (6,7). Here (2,4,6)ay = 3,5,7 must be a triple of S.

But then the third element z of 2,52 must be different from 1,.--, 7, say 8,
and we have 2,5,8 and also a triple 1,8,9. Here ay = (1) (2,3) (4,5) (6,7)
(8,9) and (2,5,8)a1 = 3,4,9. Hence we have triples

1 2 3 2 4 6 3 6§ 7
1 4 2 5 4
(4.4) - 3 2+ .5+ 8 3 9
1 8 9
and collineations
‘ g ar = (1) (2,3) (4,5) (6,7) (8 9)
| o2 = (2) (1,3) (4,6) (5,8)
(4.5) ag = (3) (1,2) (4,9) (5,7)
‘ ag = (4) (1,5) (2,6) (3,9)
as = (5) (1.4) (2,8) (3’7)
here
. (1,4,5)x2 = 3,6,8
(4.6) (1,4,5)as = 2,9,7

(1,2,3)aq .= 5,6,9
_ (1,2,3)a5 = 4,8,7
giving us the complete Sy contammg 1,2,3 and 1,4,5 as above in (4.2). Thus ~

property (1) implies (2).
A number of recent results are to the effect that certain hypotheses imply

~ that a finite plane is Desarguesian. I'shall content myself with listing

several of these:

Gleason [9]. Every finite Fano plane is Desarguesian.

Here a Fano plane is a plane in which the diagonal points of a complete
quadrilateral are collinear.

Gleason [9]. A finite plane is Desargue.sz'an if for every pair P, where P
18 @ point lymg on the line 1 there is a non-identical elation with center P and
axis [.

JfL/JfE 52, A EL 52 #EPDFIE U5 0] : 'www. ertongbook. com



