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FOREWORD

This IMA Volume in Mathematics and its Applications

DISPERSIVE TRANSPORT EQUATIONS
AND MULTISCALE MODELS

along with the accompanying volume, “Transport in Transition Regimes”
which will be published as IMA Volume 135 contains papers presented at
three one-week workshops. The first workshop “Dispersive Corrections to
Transport Equations” which took place on May 1-5, 2000 was organized by
Anton Arnold (Universitaet Muenster), Naoufel Ben Abdallah (Université
Paul Sabatier), C. David Levermore (University of Maryland), and Ken T.-
R. McLaughlin (University of Arizona). The second workshop “Simulation
of Transport in Transition Regimes” was held on May 22-26, 2000. The
organizers were Pierre Degond (Université Paul Sabatier), Irene M. Gamba
(University of Texas at Austin), and Philip Roe (University of Michigan).
Leonard J. Borucki (Motorola, Inc.) and Christian Ringhofer (Arizona
State University) were the organizers of the third workshop “Multiscale
Models for Surface Evolution and Reacting Flows” which took place on
June 5-9, 2000. The three workshops were integral parts of the 1999-2000
IMA program on “REACTIVE FLOW AND TRANSPORT PHENOM-
ENA

We would like to thank the organizers and all the participants for
making the events successful. We also appreciate the organizers for their
vital role as editors of the two proceedings.

We take this opportunity to thank the National Science Foundation,
whose financial support of the IMA made the annual program possible.

Series Editors
Douglas N. Arnold, Director of the IMA
Fadil Santosa, Deputy Director of the IMA



PREFACE

IMA Volumes 135: Transport in Transition Regimes and 136: Disper-
sive Transport Equations and Multiscale Models are the compilation of pa-
pers presented in 3 related workshops held at the IMA in the spring of 2000.
The focus of the program was the modeling of processes for which transport
is one of the most complicated components. This includes processes that
involve a wide range of length scales over different spatio-temporal regions
of the problem, ranging from the order of mean-free paths to many times
this scale. Consequently, effective modeling techniques require different
transport models in each region.

In some cases the underlying kinetic description is relatively well un-
derstood, such as is the case for the Boltzmann equation for rarified gases,
or the transport equation for radiation. In such cases the main issue is
one of economy, a fully resolved kinetic simulation being impractical. One
therefore develops homogenization, stochastic, or moment based subgrid
models. This was the focus of two of the workshops: “Model Hierarchies for
the Evolution of Surfaces under Chemically Reacting Flows” and “Trans-
port Phenomena in Transition Regimes.”

In other cases there is considerable disagreement about the underlying
kinetic description, especially when dispersive effects become macroscopic,
for example due to quantum effects in semiconductors and superfluids.
These disagreements are the focus of the workshop: “Dispersive Corrections
to Transport Equations.”

Workshop on “Dispersive Corrections to Transport Equations,” May
1-5, 2000 (Organized by D. Levermore, A. Arnold, N. Ben Abdallah, K.
McLaughlin)

Dispersive corrections to classical and semiclassical transport equa-
tions arise from the rudimentary incorporation of quantum effects into
macroscopic flow descriptions. These models play an increasing role in the
study of nanometer scale electronic devices and of fluids at extremely low
temperatures. One of the advantages of dispersively corrected transport
equations is that they allow for a more classical coupling of the quantum
system to the environment than the fully quantum mechanical descriptions.
The main topics of this workshop were, on one hand, the mathematical
derivation of dispersive correction terms, and, on the other hand, the com-
putational issues raised by the interplay between nonlinear and dispersive
effects in quatum dots and wires, superfluids and dispersive phenomena in
nonlinear optics.

Workshop on “Simulation of Transport in Transition Regimes,” May
22-26. 2000 (Organized by P. Degond, I. Gamba, P. Roe, R. Glassey)

Technology is increasingly advancing into regimes in which particle
mean-free paths are comparable to the length scales of interest, whereby

vii



viii PREFACE

traditional transport models breakdown. For example, drift-diffusion mod-
els of electron-hole transport break down for submicron semiconductors,
while Navier-Stokes approximations of fluid dynamics break down in outer
planetary atmospheres or hypersonic flight. The cost of particle simulations
is usually much larger than that of fluid simulations. This makes the sim-
ulation of problems in which transition regimes coexist with fluid regimes
particularly difficult. This difficulty is compounded when the geometry of
the problem is complex or even random. This workshop explored advanced
moment based models, both deterministic and stochastic in origin, in the
context of the simulation of high-altitude flight, charged particles in outer
planetary atmospheres, electron and holes in submicon semiconductor de-
vices, and radiation through inhomogenous media, together with hybrid
numerical schemes that properly match transition regimes.

Workshop on “Multiscale Models for Surface Evolution and Reacting
Flows,” June 5-9, 2000 (Organized by L. Borucki and C. Ringhofer)

Multilayered compound materials with microscopically structured sur-
faces play a key role in semiconductor manufacturing. These structures are
produced by a variety of processes, such as the deposition of thin films,
etching techniques and controlled crystal growth. The topic of this work-
shop was the integration of different models describing these processes on
different spatial and temporal scales. Well-developed models exist for each
stage of the above processes on the microscopic-atomistic and macroscopic-
fluid scale. However, in order to describe completely the whole process, it is
necessary to link these models via an appropriate mathematical description
of the transition regimes. This involves a mixture of boundary layer and
homogenization techniques as well as a mathematical analysis of the tran-
sition process from the atomistic description of the early stages of thin film
growth to the evolution of continuous films. Computational issues covered
by this workshop were the deterministic and probabilistic representation of
film surfaces and numerical methods for the transitional models.

Anton Arnold (Institut fuer Numerische Mathematik, Universitaet
Muenster)

Naoufel Ben Abdallah (Laboratoire MIP, Universit Paul Sabatier)
Pierre Degond (Mathématiques pour 'Industrie et la Physique, CNRS,
Universite Paul Sabatier)

Irene Gamba (Department of Mathematics, University of Texas at
Austin)

Robert Glassey (Department of Mathematics, Indiana University)
C. David Levermore (Applied Mathematical and Scientific
Computation Program, University of Maryland)

Christian Ringhofer (Department of Mathematics, Arizona State
University)
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ON THE DERIVATION OF NONLINEAR SCHRODINGER
AND VLASOV EQUATIONS

CLAUDE BARDOS*, FRANCOIS GOLSE!, ALEX GOTTLIEB#, AND
NORBERT J. MAUSERS

Abstract. We present and discuss derivations of nonlinear 1-particle equations from
linear N-particle Schrédinger equations with pair interaction in the time dependent case.

We regard both the “classical” limit of vanishing Planck constant A — 0 which
leads to Vlasov type equations and the “weak coupling” limit 1/N — 0 which leads to
nonlinear 1 particle equations.

We use an approach to weak coupling limits where the so-called “finite Schrédinger
hierarchy” and the limiting “(infinite) Schrodinger hierarchy” play a central role. Con-
vergence of .solutions of the first to solutions of the second is established using “physically
relevant” estimates (L2 and energy conservation) under very general assumptions on the
interaction potential, including in particular the Coulomb potential.

The goal of this work is to give an overview of the existing results, including some
minor improvements, and clearly state the open problems.

1. Introduction. In this work we give a survey of the derivation of
nonlinear 1-particle Schrodinger and Vlasov equations starting from the lin-
ear N-particle Schrodinger equation. We regard both the “classical” limit
of vanishing Planck constant i — 0 which leads to Vlasov type equations
and the “weak-coupling” limit 1/N — 0 which leads to nonlinear 1-particle
equations. The relevant particle systems and limits are illustrated in the
following (presumably commutative) diagram:

linear N-body _ h—0 S linear N-body

Schrédinger equation Vlasov equation

l |

1/N—0 . 1/N—0
—_ . —

! 1
nonlinear 1-body _h=0 nonlinear 1-body
Schrédinger (- Poisson) Vlasov (- Poisson)

*CMLA, ENS-Cachan and LAN (Univ. Paris 6), France (bardos@math.jussieu.fr).

fENS-Ulm and LAN (Univ. Paris 6), France (Francois.Golse@ens.fr).

tInst. f. Mathematik, Univ Wien, Strudlhofg. 4, A-1090 Wien, Austria (gottlieb
@math.berkeley.edu).

8Inst. f. Mathematik, Univ Wien, Strudlhofg. 4, A-1090 Wien, Austria (mauser
Qcourant.nyu.edu).



2 CLAUDE BARDOS ET AL.

The vertical arrows represent the weak-coupling limits and the horizon-
tal arrows represent the classical limits. The diagonal limit, i.e., the clas-
sical 4+ weak-coupling limit corresponding to letting A — 0% and N — oo
(simultaneously) shall also be considered in the present contribution.

The vertical limit from the linear N-particle Schrodinger equation to
a nonlinear 1-particle Schrédinger equation has been given by Spohn in
[ Spl], with recent minor improvements in [ BGM1]; both contributions
assuming bounded potentials.

The vertical limit from the linear N-particle Vlasov equation to a
nonlinear l-particle Vlasov equation has been given by Braun and Hepp
in [ BH], assuming bounded and regular potentials.

The diagonal limit from the linear N-particle Schrodinger equation to
a nonlinear 1-particle Vlasov equation is given by Narnhofer and Sewell in
[ NS] for the case of a bounded, real analytic interaction potential.

The lower horizontal limit has been given by Lions and Paul in [ LP],
and Markowich and Mauser in [ MM] thus deriving the Vlasov-Poisson
from the Schrodinger-Poisson system.

Validating the upper horizontal limit, from the linear N-particle
Schrédinger equation to the linear N-particle Vlasov equation, is still an
open problem for the case of Coulomb interaction.

The three succeeding sections of this article investigate the three non-
horizontal limits just mentioned. Our ultimate goal is to prove the existence
and uniqueness of solutions to an infinite hierarchy of equations associated
to the relevant N-particle dynamics and scaling. Existence and uniqueness
of solutions to the infinite hierarchy easily implies the limits with which we
are concerned. Uniqueness can be shown to hold if the 2-body potential
satisfies strong enough conditions, like boundedness, but existence is easier
to establish (cp. [ BGM1]. Solutions to the infinite hierarchy are obtained
as accumulation points of the finite-particle dynamics, in a suitable topol-
ogy. This convergence does not require boundedness of the interparticle
potential. Since we have in mind the case of the Coulomb potential, which
leads to the Schrodinger-Poisson system, we value the existence theorems
announced below because their hypotheses accommodate unbounded po-
tentials.

The weak-coupling limit of N-particle quantum systems is the tool
for the derivation of a time-dependent Hartree equation, as indicated by
the left vertical “1/N arrow” in the diagram above. However, the same
technique seems not to work for deriving a (local approximation of) time
dependent Hartree-Fock equation based on Pauli’s exclusion principle. As
shown in Section 5, the weak limit of the density matrix is vanishing in this
“fermion case”.

How to derive a nonlinear 1-body time-dependent Schrédinger equa-
tion for fermions in the infinite-particle limit (but not classical limit) is
not known. The following diagram outlines an approach to this problem
in the stationary case which is outside the scope of this article. For the
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stationary case indeed rigorous results are available (see e.g. [ BM] and
references therein), for the time dependent case a heuristic model is given
in [ M6].

llinear N-body Schrédinger equatiﬂ
4

Hartree Fock ansatz
minimization of total energy

l

Hartree-Fock system

l

local approximation of exchange term

N — o0
l

ISchriidinger - Poisson-Xa equation

2. The weak coupling limit of the linear N Schrédinger equa-
tion. The starting point is the Schrodinger equation for the wave function
Uy =¥nN(x1,22,...,ZN,t) of N interacting particles, which reads

- R 1
(1) O ¥N=— D AgUntw D V(e —z)¥y=:Hn¥n
1<j<N 1<j<k<N

(2) Un(t=0) = UL (z1,22,....zN).

The factor 1/N in front of the potential V is the standard weak-coupling
scaling, as discussed e.g. by Spohn in [ Sp2]. It corresponds to assuming
that collective effects of order 1 can be observed over a unit length of the
macroscopic time scale.

The potential V is assumed to be real-valued and bounded from below,
but no assumption is made as to its sign. In other words, attractive as well
as repulsive interactions are amenable to the methods presented in this
paper.

The following notations will be used constantly in the sequel

Xn:i=(z1,%2,....,ZN), Xn:=(T1,%2,..,Zn), X§¥:=(Tnt1,--TN)
(3) Yn:i= (1,92, Un), Yo:=W1,%2¥n), YF:=(Ynt1,--YUN)
ZN = (21,22, 2N), Zn:=(21,22,-,2n), Zn:=(Znt1,-2N)
VN = (v1,v2,...,un), V™= (v1,v2,...,0), V&= (Uni1,-, UN).

The state of the N-particle system can also be described (see for example
[ LL3]) by the density operator py(t) acting on L2(IR*)N or equivalently
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by its integral kernel, known as the density matrix pn(Xn,Yn,t). For a
general “mixed state” we have

(4) pN (XN, YN, t) = Z MUN (XN, )N (YN, t),
kEIN

where A\ > 0 are the “occupation probabilities” satisfying ), Ax = 1.
However, the N-particle Schréodinger equation is linear, so that we can
assume without loss of generality that the density matrix is that of a “pure
state”:

pN(XN, YN, t) = pN(ZT1,%2, 0, TN, Y1, Y25 - YN s T)

(5) Un(Yn,t)
= Un(Xn,t) TN (YN, 1)

This density matrix pn(Xn,Yn,t) is the integral kernel of the density
operator py(t), the time evolution of which is given by

.tH tH
(6) pN(t) =€ pn(0)e R
i.e. the density operator py(t) satisfies the “von Neumann equation”:
(7) ih0ipn = Hnpn — pnHN .

Equivalently, the density matrix must satisfy

. h?
thOipn (XN, YN, t) = ‘7[AXN — Ayylpn(X N, YN, t)

8
(8 +% > V(lzs — el)dis — V(g5 — ykDlon (XN, Y, 1)
1<j<k<N

The operator py is of trace class, its trace being given by:

Toow(t) = [ ow(Xovs Xov, )Xy = JLZE IR

9
©) = [ 1) axy =1

after normalization.
The “marginal distributions” or “partial traces” are introduced ac-
cording to the formula:

(10) pN,‘n(t) = T‘I‘[n-{—l,N]pN(t) = /pN(X’n’ ZI‘,\lIa Y‘n.a le'\lla t)dZ]QI :
We further assume that the initial data satisfy the relation

Z1,Z2,.-.7Zn,Y1,Y ,...,yn,O =
(11) pN( 1,22 ny Y1, Y2 )
PN (:L'a(l) 1 La(2)1 9 To(n)) Yo (1)) Yo (2)s -++» Yo(n)> 0)
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for any permutation o of the set {1,2,3,...,N}. This encodes the fact
that we are considering the statistics of undistinguishable particles. This
property is preserved by the time evolution of the von Neumann equation,
so that (11) implies that

pN($17$27 "'7"En7 y17 y23 LE Lt | ynvt) =

(12)
pN(-Tg(l), Zg(2)s 1 Lo(n)r Yo (1)1 Yo (2)s -+ Ya(n)» t)

holds for all t € IR.

Assuming that the initial N-particle distribution satisfies (11), we ob-
tain from a rather straightforward computation that the marginal distri-
butions pn () solve the system

. R
ZhatpN,n(X‘ru ant) = _?[AXH - AYH]PN,n(Xnv ant)
1
(13) T 1<Z V(lzj — zk]) = V(Y5 — yk])]pnn(Xn, Ya, t)
<j<k<n
N—n
+ > /[V(l%‘—Zl)—V(lyj~Z\)]pzv,n+1(Xn,z,Yn,z,t)dz-
1<j<n

Observe indeed that the missing term in (13) is the one corresponding to
applying the partial trace Tr(, 41 n) to the summation that appears as the
last term in the right hand side of (8) restricted to the subset of indices
{(4,k) | m+1 < j,k < N}. Since this restricted sum involves only terms that
obviously vanish on the set {(Xn,Yn)| X% = Y{}, applying the partial
trace Tr[,41,n) does not contribute any additional term in (13).

The system (13) is called the “N-particle (finite) Schrodinger hierar-
chy”. Observe in particular that for n = N one recovers the equation (8)
for pn,N = pN.

Introducing the operators Cy, n+1 mapping n + l-particle densities to
n-particle functions formally defined by

Cn,n+1(pN,n+1)(XTL’ Yﬂ) =

$ / V(s — 21) = V({5 — 2D]ow st (X 2, Yo, 2)dz

1<j<n

(14)

the N-particle Schrédinger hierarchy is rewritten as:

2

. h
ZhatpN"ﬂ(X’IHYNvt) = 'T{Axn - AYn}pN,”l(Xnﬂy‘n?t)
1
(15) x> V2 —kl) = V(g — ykDlowa(Xn, Yo, 1)
1<j<k<n
N-—-n

-+

N (Cn,n+le,n+1)(Xn,Yn,t) , Yn=1,...,N,
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(16) N (Xn, Yn,t) =0, VYn>N.

The “infinite Schrédinger hierarchy” is obtained from the N-particle (fi-
nite) Schrodinger hierarchy by letting N — 400 while keeping % fixed and
giving up the constraint (16). We denote by p, the n-particle marginal
distribution involved in the infinite Schrodinger hierarchy which of course
differs from py ,, the n-th marginal distribution involved in the N-particle
(finite) hierarchy. Letting formally N — 400 in (13) leads to:
52
Zhatﬂn(Xnv an t) = __[AXn - AYn]pn(X'fh an t)
+ 3 W= =Vs—2lonss (X 2 Yo, 2, 1)

1<j<n

(17)

A function p, of the variables (X,,Y,,) is henceforth said to be factorized
if it is the n-th fold tensor power of a function p = p(z1,y1), i.e

(18) Xn»Y) H P :Ek:,yk

1<k<n
Observe that if ¢(z,t) is a solution of the (nonlinear) “self-consistent,

1-particle Schrédinger equation”

. h? )
(19) ihoyp(x,t) = 5 Ba(,1) +¢(w,t)/V(lr — z)|[¥(z,t)|°dz
then
(20) p =Pz, t)P(y,t)

is a solution of the “self-consistent von Neumann equation”

. h?
lhatp(x7yvt) = __[AI - Ay]p('ra Y, t)

(21) 2
+ptant) [V(ie=2)=V(iy—2Dlolz = s,
while the (sequence of) factorized n-particle densities
(22) (Xn,Yn,t H p(mkaykat)
1<k<n

is a solution of the (infinite) Schrédinger hierarchy. On the other hand, at
t =0 (cf (9)):

pN,n+1(XnaYna0) = H w(xk,0)¢(yk70) H /[w 2k | dzy,
(23) 1<k<n n+1<k<N

[T ¢@e09we0)= [ @k u.0)

1<k<n 1<k<n
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As a consequence a uniqueness result for the hierarchy (Corollary 2.1 below)
implies that, with initial data factorized as in (18), the solution of the
hierarchy is given by

(24) pn(l'n»yrnt): H ’l,b(l‘k,t)?/)(yk,t)

1<k<n

with 1(zk,t) solution of the self-consistent Schrédinger equation (19). The
factorization, assumed at ¢ = 0 for the finite hierarchy, will in general
get lost at later times due to the presence of the interaction potential V;
however it is recovered in the limit as NV — +-o00.

2.1. A priori estimates for the N-particle Schrédinger hier-
archy. The starting point is a variant of the Cauchy-Schwarz inequality
applied to the marginal distributions. While straightforward, it provides
useful estimates.

PROPOSITION 2.1. The marginal distributions satisfy the inequalities

(25) // |pN,n(XnaYn’ t)|2andYn <1
and
PNn+1(Xn, 2, Y, 2,1)| <
(26) [ +1(Xn n )| R .
pN,n+l(Xn»Z7XmZ,t)2PN,n+l(Yn»Z7Yn7zat)§
for dlt € R.

Another basic result is a A-dependent estimate on the kinetic energy
of the N-particle system.
PROPOSITION 2.2. Assume that the interacting potential is of the form

V(lzl) = Vi(Jz]) + V_(l2})

(27) _ o
with Vi(jz]) >0, Vi € L2(R3), V_([z])) = —Cpot > —00.

Assume further that the initial data Vi (x1,...,zN) satisfies the assump-
tion of undistinguishable particles (11) and has energy

enn= 3 Y / [V, Uk (Xn)[2dX n
(28) 1<j<N
+']1V 2, /V(I%—wkl)l\I/’N(XN)FdXN:O(N)

1<j<k<m

as N — +oo.
Then, for any j such that 1 < j < n, the solution ¥ of the N-particle
Schrédinger equation satisfies
N(N -1) Enp
N2R? NRr® '

(29) sup /|sz\I/N(XN,t)|2dXN < Cpot
1<j<N



