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TAS/Park City
Mathematics Institute

The TAS/Park City Mathematics Institute (PCMI) was founded in
1991 as part of the “Regional Geometry Institute” initiative of the
National Science Foundation. In mid-1993 the program found an in-
stitutional home at the Institute for Advanced Study (IAS) in Prince-
ton, New Jersey. The PCMI continues to hold summer programs in
Park City, Utah.

The TAS/Park City Mathematics Institute encourages both re-
search and education in mathematics and fosters interaction between
the two. The three-week summer institute offers programs for re-
searchers and postdoctoral scholars, graduate students, undergradu-
ate students, high school teachers, mathematics education research-
ers, and undergraduate faculty. One of PCMI’s main goals is to make
all of the participants aware of the total spectrum of activities that
occur in mathematics education and research: we wish to involve pro-
fessional mathematicians in education and to bring modern concepts
in mathematics to the attention of educators. To that end the sum-
mer institute features general sessions designed to encourage interac-
tion among the various groups. In-year activities at sites around the
country form an integral part of the High School Teacher Program.



vi IAS/Park City Mathematics Institute

Each summer a different topic is chosen as the focus of the Re-
search Program and Graduate Summer School. Activities in the Un-
dergraduate Program deal with this topic as well. Lecture notes from
the Graduate Summer School are published each year in the IAS/Park
City Mathematics Series. Course materials from the Undergraduate
Program, such as the current volume, are now being published as
part of the IAS/Park City Mathematical Subseries in the Student
Mathematical Library. We are happy to make available more of the
excellent resources which have been developed as part of the PCMI.

John Polking, Series Editor
February 20, 2006



Preface

These lectures were prepared for the advanced undergraduate course
in Geometric Combinatorics at the Park City Mathematics Institute
in July 2004. Many thanks to the organizers of the undergradu-
ate program, Bill Barker and Roger Howe, for inviting me to teach
this course. I also wish to thank Ezra Miller, Vic Reiner and Bernd
Sturmfels, who coordinated the graduate research program at PCMI,
for their support. Edwin O’Shea conducted all the tutorials at the
course and wrote several of the exercises seen in these lectures. Edwin
was a huge help in the preparation of these lectures from beginning
to end.

The main goal of these lectures was to develop the theory of con-
vex polytopes from a geometric viewpoint to lead up to recent devel-
opments centered around secondary and state polytopes arising from
point configurations. The geometric viewpoint naturally relies on lin-
ear optimization over polytopes. Chapters 2 and 3 develop the basics
of polytope theory. In Chapters 4 and 5 we see the tools of Schlegel
and Gale diagrams for visualizing polytopes and understanding their
facial structure. Gale diagrams have been used to unearth several
bizarre phenomena in polytopes, such as the existence of polytopes
whose vertices cannot have rational coordinates and others whose
facets cannot be prescribed. These examples are described in Chap-
ter 6. In Chapters 7-9 we construct the secondary polytope of a
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viii Preface

graded point configuration. The faces of this polytope index the reg-
ular subdivisions of the configuration. Secondary polytopes appeared
in the literature in the early 1990’s and play a crucial role in combina-
torics, discrete optimization and algebraic geometry. The secondary
polytope of a point configuration is naturally refined by the state
polytope of the toric ideal of the configuration. In Chapters 10-14 we
establish this relationship. The state polytope of a toric ideal arises
from the theory of Grobner bases, which is developed in Chapters 10—
12. Chapter 13 establishes the connection between the Grobner bases
of a toric ideal and the regular triangulations of the point configura-
tion defining the ideal. Finally, in Chapter 14 we construct the state
polytope of a toric ideal and relate it to the corresponding secondary
polytope.

These lectures are meant to be self-contained and do not require
any background beyond basic linear algebra. The concepts needed
from abstract algebra are developed in Chapters 1, 10, 11 and 12.

I wish to thank Tristram Bogart, Ezra Miller, Edwin O’Shea and
Alex Papazoglu for carefully proofreading many parts of the original
manuscript. Ezra made several important remarks and corrections
that have greatly benefited this final version. Many thanks also to
Sergei Gelfand and Ed Dunne at the AMS office for their patience and
help in publishing this book. Lastly, I wish to thank Peter Blossey
for twenty-four hour technical assistance in preparing this book.

The author was supported in part by grants DMS-0100141 and
DMS-0401047 from the National Science Foundation.

Rekha R. Thomas
Seattle, January 2006
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Chapter 1

Abstract Algebra:
Groups, Rings and
Fields

This course will aim at understanding convez polytopes, which are fun-
damental geometric objects in combinatorics, using techniques from
algebra and discrete geometry. Polytopes arise everywhere in the
real world and in mathematics. The most famous examples are the
Platonic solids in three-dimensional space: cube, tetrahedron, octahe-
dron, icosahedron and dodecahedron, which were known to the ancient
Greeks. The natural first approach to understanding polytopes should
be through geometry as they are first and foremost geometric objects.
However, any experience with visualizing geometric objects will tell
you soon that geometry is already quite hard in three-dimensional
space, and if one has to study objects in four- or higher-dimensional
space, then it is essentially hopeless to rely only on our geometric
and drawing skills. This frustration led mathematicians to the dis-
covery that algebra can be used to encode geometry and, since alge-
bra does not suffer from the same limitations as geometry in deal-
ing with higher dimensions, it can serve very well as the language
of geometry. A simple example of this translation can be seen by
noting that, while it is hard to visualize vectors in four-dimensional

1



2 1. Abstract Algebra: Groups, Rings and Fields

space, linear algebra allows us to work with their algebraic incarna-
tions v = (v1,v2,v3,v4) € R* and w = (wy,ws, w3, ws) € R* and
to manipulate them to find new quantities, such as the sum vector
v+ w = (v1 + wi,vs + wa,v3 + w3,v4 +wy) € R* or the length of
their difference vector \/(vi — w1)2 + -+ + (v4 — wy)?. We use R for
the set of real numbers.

These lectures will focus on techniques from linear and abstract
algebra to understand the geometry and combinatorics of polytopes.
We begin with some basic abstract algebra. The algebraically sophis-
ticated reader should skip ahead to the next chapter and refer back
to this chapter only as needed. The material in this lecture is taken
largely from the book [DF91].

In linear algebra one learns about vector spaces over fields. Both
of these objects are examples of a more basic object known as a group.

Definition 1.1. A set G along with an operation * on pairs of ele-
ments of G is called a group if the pair (G, *) satisfies the following
properties:

(1) * @s a binary operation on G: This means that for any two
elements g1, g2 € G, g1 * g2 € G. In other words, G is closed
under the operation * on its elements.

(2) * is associative: For any three elements g1, g2, 93 € G,
(91 % 92) * 93 = g1 * (92 * 93)-

(3) G has an identity element with respect to x: This means
that there is an element e € G such that for all g € G,
exg=gxe = g. If x is addition, then e is usually written
as 0. If % is multiplication, then e is usually written as 1.

(4) Every g € G has an inverse: For each g € G there is an
element g~! € G such that gx g~ ! =g lsxg=-ce. If xis
addition, then it is usual to write g~! as —g.

It can be proved that the identity element in G is unique and
that every element in G has a unique inverse. Let Z be the set of
integers and let R* := R\{0}. The multiplication table of a finite
group is a |G| x |G| array whose rows and columns are indexed by the
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elements of G’ and the entry in the box with row index g and column
index g is the product g * ¢’.

Exercise 1.2. Check that the following are groups. In each case,
write down how the binary operation works, the identity element of
the group, and the inverse of an arbitrary element in the group.

(1) (2*,+)
2) (R, %)
3) ((R*)™, x)

The above groups are all infinite. We now study two important
families of finite groups that are useful in the study of polytopes.

The symmetric group S,:

Recall that a permutation of n letters 1,2, ..., n is any arrangement
of the n letters or, more formally, a one-to-one onto function from
the set [n] :={1,2,...,n} to itself. Permutations are denoted by the
small Greek letters o, 7, etc. and they can be written in many ways.
For instance, the permutation

c:{1,2,3} - {1,2,3} : 1—2,2—1,3—3

; . 1 2 3
is denoted as either ( 9 1 3

ing just the last row as 213. Since permutations are functions, two
permutations can be composed in the usual way that functions are
composed: f o g is the function obtained by first applying g and
then applying f. The symbol o denotes composition. Check that
213 o 321 = 312, which is again a permutation. Let S,, denote the
set of all permutations on n letters. Then (Sy,0) is a group with n!
elements. We sometimes say that 312 is the product 213 o 321.

) or, more compactly, by record-

Exercise 1.3. (1) Check that (S, o) is a group for any positive
integer n. What is the identity element of this group, and
what is the inverse of a permutation o € S,,?
(2) List the elements of Sy and Ss, and compute their multipli-
cation tables.
Definition 1.4. The group (G, *) is abelian if for all g,¢’ € G,
gxg =g *g.
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Check that S3 is not an abelian group. Do you see how to use
this to prove that (S, o) is not abelian for all n > 3?

We now study a second family of non-abelian groups. The reg-
ular n-gon, which is a polygon with n sides of equal length, is an
example of a polytope in R?. Regular polygons have all sides of equal
length and the same angle between any two adjacent sides. For in-
stance, an equilateral triangle is a regular 3-gon, a square is a regular
4-gon, a pentagon with equal sides and angles is a regular 5-gon, etc.

The dihedral group D,,,:

The group Dy, is the group of symmetries of a regular n-gon. A
symmetry of a regular n-gon is any rigid motion obtained by tak-
ing a copy of the n-gon, moving this copy in any fashion in three-
dimensional space and placing it back down so that the copy exactly
covers the original n-gon. Mathematically, we can describe a sym-
metry s by a permutation in S,. Fix a cyclic labeling of the corners
(vertices) of the n-gon by the letters 1,2,...,n. If s puts vertex i
in the place where vertex j was originally, then the permutation s
sends i to j. Note that since our labeling was cyclic, s is completely
specified by noting where the vertices 1 and 2 are sent. In particular,
this implies that s cannot be any permutation in S,,.

How many symmetries are there for a regular n-gon? Given a
vertex i, there is a symmetry that sends vertex 1 to i. Then vertex
2 has to go to either vertex 7 — 1 or vertex 7 + 1. Note that we have
to add modulo n and hence n +1is 1 and 1 — 1 is n. By following
the first symmetry by a reflection of the n-gon about the line joining
the center of the n-gon to vertex i, we see that there are symmetries
that send 2 to either ¢ — 1 or 7 + 1. Thus there are 2n positions that
the ordered pair of vertices 1 and 2 may be sent to by symmetries.
However, since every symmetry is completely determined by what
happens to 1 and 2, we conclude that there are exactly 2n symmetries
of the regular n-gon. These 2n symmetries are the n rotations about
the center through 2——;’1 radians for 1 < ¢ < n and the n reflections
through the n lines of symmetry. If n is odd, each symmetry line
passes through a vertex and the midpoint of the opposite side. If
n is even, there are n/2 lines of symmetry which pass through two
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opposite vertices and n/2 which perpendicularly bisect two opposite
sides. The dihedral group Dy, is the set of all symmetries of a regular
n-gon with the binary operation of composition of symmetries (which
are permutations).

Example 1.5. Let O be a square with vertices 1,2,3,4 that are
labeled counterclockwise from the bottom left vertex and centered
about the origin in R%. Then its group of symmetries is the dihedral

group
'6_1234 3—1234 )
X1 2 3 4 ) A4 32 1)
1 2 3 4 1 2 % 4
'r: 7‘2:
Da — 2% 3 4 1 4° 3412’>
ST ) (1 23 4 ros— (1 23 4
N4 1 2 3 ) k1 4 3 9 )
2o 1 2 3 4 o L 2 3 4
| N2 1 4 3 )7 “\3 21 4) ]

where r denotes counterclockwise rotation by 90 degrees about the
origin and s denotes reflection about the horizontal axis.

Exercise 1.6. Fix a labeling of a regular n-gon (say counterclock-
wise, starting at some vertex). Let r denote counterclockwise rotation
through %—L’E radians and let s denote reflection about the line of sym-
metry through the center of the n-gon and vertex 1. Then show the
following.

(1) Do = &, 5%, .., 0 00,005, . ..o 97" ],

(2) What are the inverses in the above group?
(Hint: (i) 1,7,72,...,r"! are all distinct, (ii) r™ = e, (iii) s® = e,
(iv) s # r? for any i, (v) sr® # srd for all 0 < i,j <n—1,1i+# j, (vi)

sr=r"1s, (vii) sr* =rts, for 0 < i <n.)

Exercise 1.7. Let G be the symmetries of a regular cube in R3.
Show that |G| = 24.

Definition 1.8. A set R with two binary operations + and X is
called a ring if the following conditions are satisfied:
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(1) (R,+) is an abelian group,

(2) x is associative : (a xb) x c=a x (bxc) for all a,b,c € R,

(3) x distributes over +: for all a,b,c € R,
(a+b)xc=(axc)+(bxc), and ax (b+c) = (axb)+ (axc).

If, in addition, R has an identity element with respect to x, we
say that R is a ring with identity. If x is commutative in R, then
we say that R is a commutative ring. The identity of (R, +) is the
additive identity in R denoted as 0 while the multiplicative identity,
if it exists, is denoted as 1. We will only consider commutative rings
with identity.

Exercise 1.9. (1) Show that (Z,+, X) is a commutative ring
with identity.

(2) Let M, denote the set of n x n matrices with entries in
R. Then show that under the usual operations of matrix
addition and multiplication, M, is a non-commutative ring
with identity. Is (M,, X) a group?

Definition 1.10. A field is a set F' with two binary operations +
and x such that both (F,+) and (F* := F\{0}, x) are abelian groups
and the following distributive law holds:

ax (b+c)=(axb)+(axc), forall a,b,c € F.

Let C denote the set of complex numbers and let Q denote the
set of rational numbers.

Exercise 1.11. Check that (C,+, x), (R, +, %), (Q, +, x) are fields
while (Z,+, x) and (M,,+, x) are not fields.

Where does a vector space fit in the above hierarchy?



Chapter 2

Convex Polytopes:
Definitions and
Examples

In this chapter we define the notion of a convex polytope. There
are several excellent books on polytopes. Much of the material on
polytopes in this book is taken from [Grii03| and [Zie95]. We start
with an example of a family of convex polytopes.

Example 2.1. Cubes: The following is an example of the familiar
three-dimensional cube:

OS.TIlSl
C;:= (.’131,:L‘2,£L‘3)€R3: 0<z, <1
0§:L‘3§1

The cube C3 has volume one and edges of length one. By translating
this cube around in R?, we see that there are infinitely many three-
dimensional cubes (3-cubes) of volume one and edges of length one
in R3. If you are interested in studying the properties of these cubes,
you might be willing to believe that it suffices to examine one member
in this infinite family. Thus we pick the above member of the family
and call it the three-dimensional unit cube.

The unit 3-cube is of course the older sibling of a square in R2.
Again, picking a representative, we have the unit square (or the unit

7



8 2. Convex Polytopes: Definitions and Examples

2-cube):
= 2.
Cs: {(Il,mz)ER 2 0% g <1

Going down in the family, we could ask who the 1-cube is. If we
simply mimic the pattern, we might conclude that the unit 1-cube is
the line segment:

Ch1 2={ (Il)ER: 0<z; <1 }
The baby of the family is the 0-cube Cp = {0} = R°.

How about going up in the family? What might be the unit 4-
cube? Again, simply mimicking the pattern, we might define it to
be
0<z <1
0<z,<1
0 S I3 S 1
0 S Ty S 1
Of course this is hard to visualize. In Chapter 4 we will learn about
Schlegel diagrams that can be used to see Cy. Making life even harder,
we could define the unit d-cube (the unit cube of dimension d) to be

Cj = (.’171,.’132,1123,124) & R4 ;

OS(L'lSl

0§.’L’2§1
Cy:={ (x1,...,24) €R?: )

O<za<1

thus creating an infinite family of unit cubes {Cy : d € N}. The sym-
bol N denotes the set of non-negative integers {0,1,2,3,...}. Every
member of this family is a convex polytope.

Definition 2.2. A set C C R? is convex if for any two points p and
q in C, the entire line segment joining them, {A\p + (1 — A\)q : 0 <
A < 1}, is contained in C.

Exercise 2.3. (1) Check that each Cy, d € N, is convex.
(2) Draw an example of a non-convex set.

Recall from linear algebra that a hyperplane in R? is a set

H:={X6Rd : Q1T +a2x2+~-+admd=b}



