Sens Dynamics of
Self-Organized

and Self-Assembled
Structures

Rashmi C. Desai and Raymond Kapral

I:AMBRIDGE



DYNAMICS OF SELF-ORGANIZED
AND SELF-ASSEMBLED
STRUCTURES

RASHMI C. DESAI AND RAYMOND KAPRAL
University of Toronto

JIMERYN

E2009003705

BB CAMBRIDGE
By UNIVERSITY PRESS




CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sdo Paulo, Delhi

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521883610

© R. C. Desai and R. Kapral 2009

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2009
Printed in the United Kingdom at the University Press, Cambridge
A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication Data

Desai, Rashmi C.
Dynamics of self-organized and self-assembled structures /
Rashmi C. Desai and Raymond Kapral.
p. cm.
ISBN 978-0-521-88361-0 (hardback)
1. Pattern formation (Physical sciences) 2. Phase rule and equilibrium.
3. Dynamics. 1. Kapral, Raymond. II. Title.
Q172.5.C45D47 2009
500.201"185-dc22
2008045219

ISBN 978-0-521-88361-0 hardback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLSs for external or third-party internet websites referred to
in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.



DYNAMICS OF SELF-ORGANIZED AND
SELF-ASSEMBLED STRUCTURES

Physical and biological systems driven out of equilibrium may spontaneously
evolve to form spatial structures. In some systems molecular constituents may
self-assemble to produce complex ordered structures. This book describes how
such pattern formation processes occur and how they can be modeled.

Experimental observations are used to introduce the diverse systems and phenom-
ena leading to pattern formation. The physical origins of various spatial structures
are discussed, and models for their formation are constructed. In contrast to many
treatments, pattern-forming processes in nonequilibrium systems are treated in a
coherent fashion. The book shows how near-equilibrium and far-from-equilibrium
modeling concepts are often combined to describe physical systems.

This interdisciplinary book can form the basis of graduate courses in pattern forma-
tion and self-assembly. It is a useful reference for graduate students and researchers
in a number of disciplines, including condensed matter science, nonequilibrium sta-
tistical mechanics, nonlinear dynamics, chemical biophysics, materials science, and
engineering.

Rashmi C. Desai is Professor Emeritus of Physics at the University of Toronto,
Canada.

Raymond Kapral is Professor of Chemistry at the University of Toronto, Canada.



To our families



The dimmed outlines of phenomenal things all merge into one another unless we put on the
focusing glass of theory, and screw it up sometimes to one pitch of definition and sometimes
to another, so as to see down into different depths through the great millstone of the world.

Analogies, James Clerk Maxwell



Preface

The idea for this book arose from the observation that similar-looking patterns
occur in widely different systems under a variety of conditions. In many cases
the patterns are familiar and have been studied for many years. This is true for
phase-segregating mixtures where domains of two phases form and coarsen in
time. A large spectrum of liquid crystal phases is known to arise from the organiza-
tion of rod-like molecules to form spatial patterns. The self-assembly of molecular
groups into complex structures is the basis for many of the developments in nano-
material technology. If systems are studied in far-from-equilibrium conditions, in
addition to spatial structures that are similar to those in equilibrium systems, new
structures with distinctive properties are seen. Since systems driven out of equilib-
rium by flows of matter or energy are commonly encountered in nature, the study
of these systems takes on added importance. Many biological systems fall into this
far-from-equilibrium category.

In an attempt to understand physical phenomena or design materials with new
properties, researchers often combine elements from the descriptions of equilibrium
and nonequilibrium systems. Typically, pattern formation in equilibrium systems
is studied through evolution equations that involve a free energy functional. In
far-from-equilibrium conditions such a description is often not possible. However,
amplitude equations for the time evolution of the slow modes of the system play the
role that free-energy-based equations take in equilibrium systems. Many systems
can be modeled by utilizing both equilibrium and nonequilibrium concepts.

Currently, a wide variety of methods is being used to analyze self-organization
and self-assembly. In particular, microscopic and mesoscopic approaches are being
developed to study complex self-assembly in considerable detail. On mesoscales,
fluctuations are important and influence the self-organization one sees on small
scales, such as in the living cell. Nevertheless, many common aspects of these
pattern-forming processes can be modeled in terms of order parameter fields, which
describe the dynamics of relevant collective variables of the system. The patterns
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xiv Preface

that are formed and the way they evolve are often controlled by certain common
elements that include the presence of interfaces, interfacial curvature, and defects.

In order to present an approach to the study of such self-assembled or self-
organized structures that highlights common features, we have intentionally limited
the scope of the presentation to descriptions based on equations for order param-
eter fields. Approaches of this type are able to capture the gross features of pattern
formation processes in diverse systems, including those in the equilibrium and far-
from-equilibrium domains. We have also intentionally omitted descriptions based
on various coarse-gained molecular dynamics methods and a variety of other meso-
scopic particle-based methods, which are proving to be powerful tools for the study
of such systems. In addition, to sharply focus our presentation we have restricted
our discussion to systems where hydrodynamic flows are not important.

A selection of the material in this book formed the basis for a one-semester course
entitled “Interface Dynamics and Pattern Formation in Nonequilibrium Systems”
given jointly in the Departments of Chemistry and Physics at the University of
Toronto. Many of the topics covered in the book have been the subjects of intense
investigations, and a large literature exists. In order to make the material as self-
contained as possible, in most cases we have provided an introduction to each
topic in a form that allows the main ideas to be exposed and derived from basic
principles. The final chapters of the book provide some additional examples of
applications that combine the two underlying themes that are developed in the
book: free-energy-functional and amplitude-equation descriptions. These chapters
show how the dynamics of physical and biological systems can be modeled using
the concepts developed in the body of the book.

Some of the material presented in the book derives from work with our col-
leagues and students. In particular we would like to acknowledge the contributions
of Augusti Careta, Hugues Chaté, Francisco Chavez, Mario Cosenza, Jorn David-
sen, Ken Elder, Simon Fraser, Leon Glass, Martin Grant, Andrew Goryacheyv,
Daniel Gruner, Christopher Hemming, Zhi-Feng Huang, Anna Lawniczak, Frangois
Léonard, Roberto Livi, Anatoly Malevanets, Paul Masiar, Alexander Mikhailov,
Gian-Luca Oppo, Antonio Politi, Sanjay Puri, Tim Rogers, Katrin Rohlf, Chris
Roland, Guillaume Rousseau, Celeste Sagui, Ken Showalter, Kay Tucci, Mikhail
Velikanov, Xiao-Guang Wu, Chuck Yeung, and Meng Zhan. We also owe a special
debt of gratitude to our colleagues who read and commented on portions of the book:
Markus Bir, Jorn Davidsen, Walter Goldburg, Jim Gunton, Christopher Hemming,
Zhi-Feng Huang, Chuck Knobler, Maureen Kapral, Alexander Mikhailov, Steve
Morris, Evelyn Sander, Len Sander, Celeste Sagui, Peter Voorhees, Tom Wanner,
Chuck Yeung, and Royce Zia. The preparation of this book would have been dif-
ficult without the help of Suzy Arbuckle and Raul Cunha, and we would like to
express our special gratitude to them for their assistance.
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1

Self-organized and self-assembled structures

Almost all systems we encounter in nature possess some sort of form or structure.
It is then natural to ask how such structure arises, and how it changes with time.
Structures that arise as a result of the interaction of a system with a template that
determines the pattern are easy to understand. Lithographic techniques rely on
the existence of a template that is used to produce a material with a given spa-
tial pattern. Such pattern-forming methods are used widely, and soft lithographic
techniques are being applied on nanoscales to produce new materials with dis-
tinctive properties (Xia and Whitesides, 1998). Less easily understood, and more
ubiquitous, are self-organized structures that arise from an initially unstructured
state without the action of an agent that predetermines the pattern. Such self-
organized structures emerge from cooperative interactions among the molecular
constituents of the system and often exhibit properties that are distinct from those
of their constituent elements. These pattern formation processes are the subject of
this book.

Self-organized structures appear in a variety of different contexts, many of which
are familiar from daily experience. Consider a binary solution composed of two
partially miscible components. For some values of the temperature, the equilibrium
solution will exist as a single homogeneous phase. If the temperature is suddenly
changed so that the system now lies in the two-phase region of the equilibrium
phase diagram, the system will spontaneously form spatial domains composed of
the two immiscible solutions with a characteristic morphology that depends on the
conditions under which the temperature quench was carried out. The spatial domains
will evolve in time until a final two-phase equilibrium state is reached. The evolution
of such structures is governed by thermodynamic free energy functions, suitably
generalized to account for the heterogeneity of the medium and the existence of
interfaces separating the coexisting phases. The spontaneous formation of such
structures is the system’s response to an initial instability or metastability (Bray,
1994; Debenedetti, 1996; Dattagupta and Puri, 2004).



2 Self-organized and self-assembled structures

Fig. 1.1. Schematic depictions of hexagonal, gyroid and lamellar nanocompos-
ites that result from the self-assembly of diacetylenic surfactants on silica. From
Brinker (2004), p. 631, Figure 6a.

The formation of macroscopic coherent spatiotemporal structures arising from an
initial instability or metastability is often a consequence of some inherent symmetry-
breaking element. Fluctuations and conservation laws also play an important role in
determining the character of the time evolution leading to self-organized structures.
As the system evolves, interfaces which delineate the boundaries of local domains
also move: thus an understanding of interface dynamics, and more generally of
defect dynamics, is a central feature of the evolution of self-organized structures.

Ultimately, self-organized structures have their origin in the nature of the inter-
molecular forces that govern the dynamics of a system. In some instances, the
connection between the macroscopic coherent structure and specific features of the
intermolecular forces is rather direct. Self-assembly of molecular constituents in
solution is such a process. Self-assembly leads to a variety of three-dimensional
structures: strong hydrophobic attraction between hydrocarbon molecules can cause
short chain amphiphilic molecules to organize into spherical micelles, cylindrical
rod-like micelles, bilayer sheets, and other bicontinuous or tri-continuous struc-
tures (Fig. 1.1) (Gelbart er al., 1994; Grosberg and Khokhlov, 1997; Brinker,
2004; Ozin and Arsenault, 2005; Pelesko, 2007). Self-assembly of long-chain block
copolymers can also occur through microphase separation as a result of covalent
bonds between otherwise immiscible parts of the polymer. This process can lead
to three-dimensional structures with topologies similar to those of amphiphilic
molecules (Fredrickson and Bates, 1996; Bates, 2005). Similarly, two-dimensional
systems, such as Langmuir monolayers at a water—air interface or uniaxial ferromag-
netic films, can self-assemble into unidirectional periodic stripes and hexagonally
arranged circular drops as a result of the competition between long-range repulsive
dipolar interactions and relatively shorter-range attractive van der Waals inter-
actions. Monolayers on a metallic substrate can also self-organize into ordered
structures (Fig. 1.2). The most direct way to model such self-assembly is by fol-
lowing the motions of the constituent elements by molecular dynamics. A number
of different coarse-grain schemes have been devised in order to extend the size,
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Fig. 1.2. Results of amolecular dynamics simulation of a densely packed assembly
of 16-mercapto-hexadecanoic acid molecules tethered to a gold surface. From
Lahann and Langer (2005), p. 185, Figure 2.

Fig. 1.3. Spiral wave CO oxidation patterns on the surface of a Pt(110) sur-
face. Reprinted with permission from Nettesheim ez al. (1993). Copyright 1993,
American Institute of Physics.

length, and timescales of such simulations (Karttunen et al., 2004; Nielsen et al.,
2004; Venturoli et al., 2006). On mesoscopic scales self-assembly can be analyzed
and understood through models based on free energy functionals and relaxational
dynamics.

Self-organized structures also arise in systems that are forced by external flows
of matter or energy to remain far from equilibrium (Nicolis and Prigogine, 1977;
Kapral and Showalter, 1995; Walgraef, 1997; Manrubia et al., 2004; Hoyle, 2006;
Pismen, 2006). If chemical reagents are continuously supplied to and removed from
a container where an oxidation reaction takes place on a catalytic surface, in many
circumstances the chemical reaction does not occur homogeneously over the entire
surface but instead proceeds by the propagation of chemical waves of oxidation that
travel across the catalytic surface. The combination of nonlinear chemical kinetics
and conditions that force the reaction to occur in far-from-equilibrium conditions
is responsible for the existence of the evolving patterns of chemical waves seen on
the surface of the catalyst (Fig. 1.3).
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Biological systems almost always operate under far-from-equilibrium conditions
since input of chemical and other energy sources is needed to maintain the living
state. Consequently, the conditions for the appearance of self-organized structures
are present in these systems. Indeed, the nonlinear chemistry associated with bio-
chemical networks, in combination with diffusion of chemical species, can lead
to the formation of chemical waves which are often implicated in the mechanisms
responsible for biological function (Winfree, 1987, 2001; Murray, 1989; Goldbeter,
1996). Chemical waves are known to play a role in cell signaling processes leading
to cell division, aggregation processes in colonies of the amoeba Dictyostelium
discoideum, and the pumping action of the heart, to name a few examples. Per-
haps even more interesting is the fact that chemical patterns have been observed in
individual living cells (Petty et al., 2000).

Although applications to fluid dynamics are not considered in this book, fluid flow
also provides many examples of self-organized structures (Cross and Hohenberg,
1993; Frisch, 1995; Nicolis, 1995; Walgraef, 1997). The hexagonal patterns arising
from Rayleigh—Bénard convection when a fluid is heated from below are familiar,
as are the complex spatiotemporal patterns seen in turbulent fluids. In such cases,
descriptions of the origins and dynamics of the patterns are usually based on an
analysis of the Navier—Stokes equation; the instabilities are seen to emerge as a
result of the convective nonlinear terms in this equation.

In contrast to equilibrium systems, in far-from-equilibrium systems free energy
functions do not always exist, and the description of the dynamics of self-organized
structures must be based on different premises. In the case of chemical and bio-
chemical systems the starting point is usually a reaction—diffusion equation, while,
as noted above, for fluid dynamics problems the Navier—Stokes equation is a natural
starting point for the analysis.

In spite of the fundamental differences in the origins of diverse self-organized
structures, there are often superficial similarities in their forms, and there exist com-
mon basic elements which are needed to understand their formation and evolution.
At the macroscopic level, one needs a description in terms of suitable field variables
or order parameters that account for the existence of spatial structure in the system.
Other common elements include the presence of interfaces that separate phases
or spatial domains that constitute the self-organized structure, and the existence of
defects in the medium. Both of these features often control the dynamical evolution
of the structure on certain time scales.

During the second half of the twentieth century, the concept of universality
played a major role in our understanding of structural correlations and dynamics
in condensed matter systems. Starting with Landau’s unifying concept of the order
parameter (Landau, 1937) and culminating in the renormalization group theory of
critical phenomena (Wilson and Kogut, 1974), these developments demonstrated



