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Preface

This volume contains the papers that were presented at the 1985 MRS
Fall Meeting in Symposium R, entitled "Computer-based Microscopic Descrip-
tion of the Structure and Properties of Materials." The purpose of the
symposium was to bring together the various communities that use computers
to predict, describe, or simulate the atomic and electronic structure and
properties of materials. It was the first such symposium at an MRS
meeting. It brought together those whose main focus is the electronic
structure and those whose main focus is the dynamics of atomic motion.

Electronic structure approaches, based on, the quantum mechanical wave
equation (Hartree-Fock, density functional theory, pseudopotentials, band-
structure theory, molecular-orbital theory, etc.) have been quite success-
ful in obtaining very accurate descriptions of the electronic properties of
given atomic arrangements, but have been limited in searching for stable
atomic configurations or doing dynamics at finite temperatures. On the
other hand, "molecular dynamics" approaches have traditionally absorbed all
electronic structure information into phenomenological interatomic poten-
tials, which makes dynamical calculations at finite temperatures feasible
and efficient. These two communities have been evolving separately, but,
in the last few years, there have been tendencies to borrow from each
other or merge the two approaches. The symposium was meant to foster this
interchange of ideas, and to bring these two main communities together with
others, including those who design and use special-purpose computers, those
who simulate experimental data, and other related fields.

The symposium was sponsored by the NSF (Steven R. Williams), the ARO
(John C. Hurt), NASA (Joseph R. Stephens), Oak Ridge National Laboratory
(through Energy Conversion and Utilization Technologies; Joseph A. Carpenter,
Jr.) and AFOSR (John E. Lintner). We are thankful for their generous
support.

Last of all, we would Tike to thank Joan Pidot,Kitty Boccio, Barbara
Cardella, Lorraine Miro and Janet Hutsko for their professional and
supportive secretarial services.

Jeremy Broughton
William Krakow
Sokrates Pantelides
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STRUCTURAL, ELECTRONIC, AND MAGNETIC PROPERTIES OF
SURFACES, INTERFACES, AND SUPERLATTICES*

ARTHUR J. FREEMAN, C.L. FU AND T. OGUCHI
Department of Physics and Astronomy, Northwestern University, Evanston,
IL 60201

ABSTRACT

Advances in all-electron local density functional theory approaches
to complex materials structure and properties made possible by the
implementation of new computational/theoretical algorithms on
supercomputers are exemplified in our full potential linearized augmented
plane wave (FLAPW) method. In this total emergy self-consistent approach,
high numerical stability and precision (to 10 in the total
energy) have been demonstrated in a study of the relaxation and
reconstruction of transition metal surfaces. Here we demonstrate the
predictive power of this method for describing the structural, magmnetic
and electronic properties of several systems (surfaces, overlayers,
sandwiches, and superlattices).

I. INTRODUCTION

Recent progress in the fabrication and property modifications of
artificial materials, such as thin films, sandwiches, and modulated
structures, have generated a great deal of interest. The excitement
surrounding this development lies in the possible discovery and synthesis
of new materials with desired properties to specification, and permitting
new phenomena to be investigated and novel devices to be made.
Concurrently, advances in computational/theoretical approaches have
developed capabilities of yielding precise results and making successful
predictions possible. In coordination with experimental studies, these
theoretical efforts serve to advance the appearance of new and quite
unexpected phenomena and to promote their understanding.

In this paper, we study theoretically the structural and magnetic
properties of (1) 3d transition metal surfaces and (2) 3d transition
metals as overlayers or sandwiches and superlattices with noble metals.
For the surfaces and sandwiches, we solve the local spin demsity
functional equations[1l] self-consistently using the full-potential
linearized augmented plane wave[2] (FLAPW) method; and the linear
moffin-tin orbital[3] (LMTO) method is employed for CrAu(001)
superlattice with various thicknesses.

II. TRANSITION METAL SURFACES

We start with the discussion of surface magnetism of 3d tramsition
metals. Since the surface atoms have lower coordination and reduced
symmetry, it is now widely recognized that there is an enhancement of the
magnetism near the surface layer as a result of localized surface
states[4]. In Table I we summarize the calculated results of the magnetic
moment for surface atoms and, for the sake of comparison, their bulk
counterparts.

For ferromagnetic Fe and Ni (100) and (110) surfaces, the magmetic
moments are enhanced by about 10 ~ 30% from their bulk values. It is
not surprising that the (100) surface has the largest enhancement simply

Mat. Res. Soc. Symp. Proc. Vol. 63. ©1985 Materials Research Society



because the surface atom has the lowest coordination numbers.

A more dramatic case is Cr(100), which undergoes a surface
ferromagnetic phase transition with a largely enhanced moment of
2.49p .. Recently, this has been confirmed by angle-resolved
photoemission experiments[5]. By contrast to the results obtained for
Cr(001), using a spin-polarized total emergy approach and a study of the
multilayer relaxation of V(100), we predict a stable paramagnetic state
for this surface. Further, for the paramagnetic V(001), we obtain a 9%
contraction of the topmost interlayer spacing accompanied by an expansion
of the second interlayer spacing by 1%, which is in excellent agreement
with LEED[6]. Analysis of the electronic structure.of V(100) shows that
the surface states which are characteristic of the occurrence of surface
magnetism in becc Cr and Fe is located about 0.3 eV above . A
comparison between Cr and V also serves to illustrate the role played by
these surface states in the enhancement of the surface magnetism in the
case of Cr(001).

Table I. Calculated magnetic moments (in pB) for
3d transition metals

v Cr Fe Ni
(100) 0 2.49 2.98 0.68
surface
(110) 2.63 0.63
bulk 0 0.59 2.15 0.56

III. METALLIC OVERLAYERS AND BIMETALLIC SANDWICHES

Having illustrated the effect of surface states on the magnetic and
electronic properties of transition metal surfaces, our next goal was to
explore the possibility of inducing 2D magnetism in a controlled way. It
turns out that the transition metal and noble metal interfaces are of
special interest[7,8] because: (1) a close to perfect epitaxial growth
due to a nearly perfect match of the 2D lattice translational vectors for
(001) Cr (or Fe) and Au (or Ag) (the (100) plane of the transition metal
layers are rotated by 45 with respect to that of the noble metal, and
the stacking has atoms in the four—fold hollow site of adjacent atomic
planes); and (2) the dissimilarity of the electronic structures between
transition metals and noble metals which ensures minimum hybridization
between localized surface (interface) states near EF and the
underlying non-—magnetic noble metal d-band.

In order to understand the electronic and magnetic structures at the
interface, we first examined the crystal structure. This was carried out
using a total energy approach for both Au/Cr/Au(001) sandwiches and AuCr
coherent modulated structures. We find that the interaction between noble
and transition metals is local in nature; this manifests itself in an



Au—Cr interlayer spacing which is an average of the bulk fcc Au and bcc
Cr spacings; the bulk Cr and Au structures are essentially unperturbed
away from the interface.

Selected results for the magnetic moments calculated within each
atomic sphere at the Au/Cr interface are presented in Table II. As an aid
in understanding the underlying physics and to emphasize its 2D nature,
we focus first on results for the experimentally unattainable free
monolayer Cr(001) film. A large magnetic moment of 4.12p, is obtained
which is close to the atomic limit and substantially larger than that of
bulk antiferromagnetic Cr metal (0.59p ). Surprisingly, when a
monolayer of Cr(001) is deposited onto Au(001), the magnetic moment of
the Cr overlayer decreases by only a small amount from the free monolayer
value to 3.70p,. This extremely large moment — the largest value
reported for a transition metal other than for Mn — is 50% greater than
that of the surface layer in Cr(001) predicted theoretical (2.49pB)
or derived experimentally (2.4p.). Also surprising is the finding
that this substantially enhance? moment is only moderately reduced (to
3.10uB) when the Cr overlayer is itself covered by a Au layer.
Apparently, the hybridization between Au and Cr is far less than
expected. A very similar result was obtained, 2.95u, per Cr atom,
when the (1x1) Cr/Au coherent modulated structure was studied with the
linear muffin—tin orbital approach (Table II) to be discussed later.
Since Cr is a notorious getter, the retention of this enmhanced 2D
magnetization in either the single sandwich or superlattice structures
might make its observation much easier.

Similar investigations have also been performed for monolayers of Fe
and V adsorbed on Ag(001). For Fe—Ag there is a close matching of the
lattice constants but a 5% mismatch for V-Ag or —-Au. As in the case of
Cr/Au(001), large magnetic moments, 2.96u, (Fe) and 2.0,,1B V),
are found for the adsorbate monolayers. Tge magnetic moment of the Fe
overlayer on Ag(001) is remarkably close to the theoretical magnetic
moment of the surface layer of an Fe(001) film (2.98p,) - again
indicating a lack of interaction with the substrate. e result for
V/Ag(001) is much more surprising since, like the bulk, the surface layer
of V(001) is not magnetic. We thus have the remarkable prediction that an
overlayer of V on Ag(001) is magnetically ordered with a sizable magnetic
moment (1.98y_) which is almost as large as the moment of Fe in bulk
Fe. (If confirmed, this will be the first solid material for which
elemental vanadium demonstrates magnetic ordering.) The origin of
magnetic ordering is not negative pressure since, in fact, the matching
to the Ag(001) substrate results from a reduced lattice constant for V by
5%. For both the Fe and V overlayers we find — despite some hybridization
between the d bands of the adsorbate and substrate — that the
adsorbate—-localized surface state bands retain their quasi-2D behavior
for these systems. This behavior is further demonstrated for a momolayer
of Fe sandwiched by Ag(001). The magnetic moment of Fe is omnly slightly
decreased from that of the overlayer of Fe/Ag(001) to 2.80pB.

[Similarly, a moment of 2.92p, on the Fe site is found for an
Au/Fe/Au(001) sandwich.] However, when a monolayer of V(001) is
sandwiched by Ag(001), the vanadium layer becomes paramagnetic.

The sensitivity of the magnetic ordering of V to its metallic
environment is further illustrated by calculations with two layers of V
on Ag(001): In this case the interface layer atoms remain essentially in
the paramagnetic state and the surface layer has a moment of 1.15p
which is substantially reduced from that of the single—overlayer value
(1.98u.). We thus have the result that a Ag substrate is more
amenab?e for the magnetism of a V monolayer than is another V layer.



IV. COHERENT MODULATED STRUCTURES (SUPERLATTICES)

In order to examine the magnetic coupling between Cr layers in the
multilayer structure, thickness effects have been examined by varying the
Cr and Au layer numbers in the CrAu(001) coherent modulated structure.

We start with the simplest case — a CrAu [1%1] superlattice
(hereafter we specify a system by a notation [n*m], where n and m denote
the number of Cr and Au layers). A non-spin polarized calculation shows a
very high density of states at associated with Cr d states, and a
Stoner instability to a ferromagnetically ordered state since the
calculated Stonmer factor N(E,)I = 1.34, In a spin polarized
calculation, a sizable magnetic moment (2.94p_) is actually found on
the Cr atoms while a small moment (0.10p_) is ferromagnetically
induced on the Au atoms. This value of tge magnetic moment is very close
to that obtained (3.1uB) for a monolayer of Cr sandwiched by Au (cf.
Table II).

Table II. Theoretical layer by layer magnetic moments (in uB) for
specified cases (with estimated uncertainties of + 0.03un). S and
(S-n) indicate surface and subsurface layers. The last column shows the
spin—polarized energy (in eV). CMS, coherent modulated structure.

E(para.)
Cr Nearest Au — E(spin-pol.)
Cr monolayer 4.12 e 1.69
1 Cr/Au(001) overlayer 3.70 0.14 0.78
2 Cr/Au(001) 2.90 (9), —-0.08 0.60
-230 (S—-1)
Au/Cr/Au(001) sandwich 3.10 0.14 (S), 0.38
0.13(5-2)
(1x1) Au/Cr CMS 295 0.10 0.25
Fe Nearest Cu, Ag, Au
Fe monolayer 3.20 . 1.34
1 Fe/Cu(001) 2.85 0.04 0.70
1 Fe/Ag(001) 2.96 0 1.14
2 Fe/Ag(001) 2.94 (S), 0.05 1.15
263 (S-1)
Ag/Fe/Ag 2.80 0 0.88
Au/Fe/Au 292 0.08 0.97
\% Nearest Ag,Au
1 V/Au(001) 1.75 0.04 0.10
1 V/Ag(001) 1.98 0.06 0.14
2 V/Ag(001) 1.15 (S), 0 0.08
<0.05 (-1
Ag/V/Ag 0 0
Cr/Fe/ Au(001) 3.10 (Cr), —0.04 (Au) 0.68
—1.96 (Fe)
Fe/Cr/Ag(001) 2.30 (Fe), —0.09 (Ag) 0.52
—2.40 (Cr)

For superlattices with thicker constituent layers, a reduction of
the magnetic moment at the interface may be expected due to greater
hybridization. The calculated magnetic moments for some CrAu(001)



Table III. Magnetic moments (in p_ ) within atomic spheres for CrAu

(001) superlattices with various ghicknesses. Each layer is specified by
atomic type, Cr or Au, ordering assumed (F=ferro and
AF=antiferromagnetic) and interplanar distance from the interface layer
(i).

superlattice type layer magnetic moments
Cx'i 2.94
[1*1]F
Au 0.10
i
Cr, 3.00
i
Ani 0.00
[1*1]AF
Cr -3.00
|
Aui 0.00
Cti 3.01
[1#3] Aui 0.07
Ani—l 0.04
Cr:i__1 -1.07
Cr:i 1.89
[3%3]
Aui 0.09
Av,_, 0.01
Cr, , 0.68
Cti—l -0.79
(11:i 1.65
[5%5]
Aui 0.08
Ani—l 0.00
Ani_z 0.01

superlattices with various thicknesses is listed in Table III.
Interestingly, in the case of CrAu [1*3], the magnetic moment on Cr is
not reduced but even slightly enhanced by an additional Au layer. The
interface Au d band becomes wider than that of the Au momolayer but not
enough to overlap with the Cr d band region; the Cr d band is essentially



the same as that of CrAu [1*1]. We may conclude that the Cr monolayer
sandwiched by Au has a sizable magnetic moment (SuB) independent of
Au thickness.

For sandwiches with thicker Cr, the magnetic moment of the interface
8r is substantially reduced from that of the momolayer Cr with Au but
still much larger (1.89u_ and 1.65p, in CrAu [3*3] and [5*5],
respectively) than that of bulk Cr ?0.59u ). The large reduction of
the interface moment is due to broadening of the interface Cr d band
caused by hybridization with inner Cr d states. We can expect such a
large moment on the interface Cr atoms (1.5p ) even for thicker
sandwiches than five layers of Cr, because tge innermost Cr atoms in CrAu
[5%5] already have a magnetic moment very close to the bulk value.

Finally, we discuss the effect of magnetic interactions between the
layers. As shown in Table III, interplanar magnetic interactions between
the Cr layers always result in antiferromagnetic couplings, while those
between the interface Cr and Au layers result in ferromagnetic omes. In
order to study the interplanar magnetic interaction in more detail, we
compare the total emergies for CrAu [1%1] superlattice where the
ferromagnetic Cr(001) monolayers are coupled ferromagnetically ([1*1]F)
or antiferromagnetically (in which case the unit cell is doubled,
[1*1]AF) along the [001] direction. We found that the antiferromagnetic
coupling is preferred by 11 mRy/formula unit. This difference will, of
course, vary with Au thickness and reach a point — with perhaps 3-5 Au
layers separating the Cr monolayers — where the interaction becomes so
weak that a reasonable external magnetic field would align the momolayers
ferromagnetically. The magnetic moment of the interface Cr in [1*1]AF is
slightly larger than that in [1*1]F (see Table III). This enhancement of
the moment and also the similar enhancement in [1*3] mentioned above can
be understood by the fact that the antiferromagnetic coupling between the
ferromagnetic Cr(001) monolayers works destructively on the magnitude of
the moments under the ferromagnetic constraint along the [001] direction.
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