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Preface

The bulk of this work originated in lecture notes prepared for two courses that I
introduced for students of mathematics at the University of Cambridge, dating back
to 1992, and with which I was associated for fifteen years. The first of these was for
final-year undergraduates and it covered the material in Chapter 1 and roughly half
of each of Chapters 2, 4 and 5. The second was for first-year graduate students and
it dealt with most of Chapters 2-6 at an accelerated pace; it did not have the former
course as a prerequisite.

While students were expected to have a good prior knowledge of elementary prob-
ability theory and perhaps some acquaintance with Markov chains, no background in
measure-theoretic probability was assumed for either course, although in each case
students had the opportunity to take a course on that topic concurrently; for the more
advanced option, an introductory course on stochastic calculus was also available to
be taken at the same time. Apart from the intrinsic interest of presenting the material
on mathematical finance, a major pedagogical motivation for introducing the courses
was to stimulate students to learn more about probability, martingales and stochas-
tic integration by exposing them to one of the most important and exciting areas of
application of those topics.

The introduction to mathematical finance presented here is designed to slot in
between those works that provide a survey of the field with a relatively light mathe-
matical content and those books at the other end of the spectrum, which take no pris-
oners in their rigorous, formal approach to stochastic integration and probabilistic
ideas. In many places in the book the slant is toward a classical applied mathemat-
ical approach with a concentration on calculations rather than necessarily seeking
the greatest generality. To avoid breaking the flow of material, where concepts from
measure-theoretic probability are required, for the most part they are not introduced
in the main body of the text but have been gathered in the mathematical prelimi-
naries in Appendix A; the reader is also encouraged to consult the books suggested
for further reading. To assist self study, solutions to all the exercises are given in
Appendix B but students are urged strongly to attempt the problems unaided before
consulting the solutions.

It is not necessary to follow the material in the book in a strict linear order. To
provide some route maps through the chapters, it should be noted that the material
in Chapter | is orthogonal to much of the remaining book in that it deals with the
more classical topics of utility and the mean-variance approach to portfolio choice,
rather than being concerned with derivative pricing, which is the focus in the remain-
der of the book. If the existence of an individual utility function is taken as given,
then this chapter is not required for an understanding of the subsequent material but



Preface

the chapter is included to give a more rounded view of finance generally. A full un-
derstanding of the binomial model, presented in Chapter 2, is central for getting to
grips with the pricing of derivatives by self-financing hedging portfolios. It should
be possible for the reader to proceed directly from this chapter to the Black—Scholes
model in Chapter 5 without studying the general discrete-time model in Chapter 3,
having acquired sufficient background on Brownian motion from Chapter 4. For ex-
ample, if the reader wanted to get quickly to the Black—Scholes formula at a first
reading, it would be possible to omit consideration of hitting-time distributions for
Brownian motion in Section 4.2, and with the ideas of Sections 4.1, 4.3 and 4.4, pro-
ceed to study Sections 5.1 and 5.2; then Section 4.5 on stochastic calculus could be
consulted to give the basis for reading Section 5.3 on hedging in the Black—Scholes
context. One might then return to look at hitting-time distributions before dealing
with path-dependent options in Section 5.4.

I must thank all the former students whose helpful observations contributed to
the development of this material, but I am particularly grateful to Bryn Thompson-
Clarke and Wenjie Xiang, who gave insightful comments on an early draft of the
book, and also to Rob Calver of Chapman & Hall for his encouragement during the
project. I am also indebted to an anonymous reviewer who provided very useful
and perceptive suggestions. Finally, I want to thank all those in Trinity College
who have contributed to making such a congenial, stimulating and beautiful working
environment, which I have been privileged to enjoy for thirty-five years.

Douglas Kennedy
Trinity College
Cambridge, CB2 1TQ
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Chapter 1

PORTFOLIO CHOICE

1.1 Introduction

The contents of this chapter are somewhat different in approach to much of the
remainder of the book. In subsequent chapters we deal principally with the problem
of pricing derivative securities; that is, secondary contracts for which the payoff is
dependent on the price of an underlying asset, such as a stock. In complete markets,
as in the cases of the binomial model of Chapter 2 or the Black—Scholes model
of Chapter 5, the price of any derivative contract, or contingent claim, is derived
objectively through ‘hedging’; the payoff of the contract may be duplicated exactly
by trading in the underlying asset and a bank account so that there is no inherent risk
to the seller of the contract. The price of the contract is just the initial cost of setting
up the trading strategy that duplicates the payoff; it is objective and risk free in that
two investors may have different views on how the price of the underlying asset may
evolve in the future but they will agree on the price of the contract. Such ideas form
the basis of much of modern financial theory.

By contrast, the two topics in this chapter deal with the attitudes of individual
investors in relation to investment decisions where these decisions are subjective in
nature. The first is the notion of an investor’s individual utility function. In a de-
terministic model it is reasonable to expect that an investor will seek to choose an
investment portfolio of assets in order to maximize the final wealth that he achieves.
When the model is stochastic the investor’s final wealth will typically be a random
variable, W, and it would no longer make sense for him to make investment decisions
seeking to maximize a random quantity. Instead, he might wish to maximize the ex-
pected value of his final wealth, E (W), so that he achieves the largest wealth on
average, or more generally it is often postulated that he seeks to maximize Ev (W)
for some appropriate function v(-); this function is referred to as the investor’s utility
function. It is individual to the investor and we show in Section 1.2 that any investor
who orders his preferences of random outcomes in a suitably consistent way pos-
sesses an essentially unique utility function and that properties of this function may
characterize his attitude towards risk.

The second topic of the chapter in Section 1.3 is concerned with mean-variance
analysis where, among portfolios giving a fixed mean return, an investor chooses
the portfolio with smallest variance of the return. The model is subjective both in its
choice of optimality criterion but also in its dependence on the investors beliefs about
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the means of the returns of the various available assets as well as the covariances
between those returns. The capital-asset pricing model in Section 1.3.5 considers the
implications for the whole market of the actions of individual investors.

The material of this chapter represents a significant step in the development of
mathematical models in finance; its importance was recognized by the award of the
Nobel Prize in Economics in 1990 to Harry Markowitz, for his contributions to the
theory of portfolio choice, and to William Sharpe, for his work on the capital-asset
pricing model.

1.2 Utility
1.2.1 Preferences and utility

We begin by discussing the classical justification for assuming that an investor
who may order his preferences for investments in a consistent manner has an es-
sentially unique utility function; furthermore, the properties of this utility function
characterize his attitude to risk. We outline the axiomatic approach to showing the
existence of such a utility function when it is assumed that the investor’s preferences
satisfy certain axioms.

Let I' be a sample space representing the set of possible outcomes of some gam-
bles with random payoffs. Let /2 be a set of probabilities on I', so that an element
A € # is a real-valued function defined on subsets (events) of I' satisfying the
following three conditions:

1. 0<A(G) < l,forall G C T
2. A(T')=1;and

3. for a finite or infinite collection of disjoint events {G; };. thatis G; N G; = @
fori # j, we have
a(Ja) =X 4@
i i

We refer to an element A € & as a gamble where A may be thought of as the
probability distribution of the outcome of the gamble. We assume that the set P
is closed under convex combinations so that forany A, B € # and 0 < p < 1
we assume that pA + (1 — p)B € P. The gamble pA + (1 — p)B takes the
value pA(G) + (1 — p)B(G) for events G € T" and it is of course a probability
on I'; this gamble would correspond to the situation where the investor tosses a coin
with probability p of ‘heads’ and 1 — p of ‘tails’ and chooses gamble A or gamble B
according to whether the outcome is heads or tails. It is an immediate consequence of
this assumption that for any gambles 4. ..., Ay € P and for real numbers p; = 0,
1 <i <k with Zf:, pi = 1, by induction on k we see that

P1AL 4+ prAx € P.
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We will assume that an investor (or gambler) has a preference relation > on #; this
corresponds to some given subset § € P x P with A > B ifandonlyif (4, B) € §
for gambles A, B € #. Read A > B as A is preferred to B. This deﬁnes arelation
~ on & by setting A ~ B when A # B and B # A for A, B € P, that is when
(A,B) ¢ 8 and (B, A) ¢ 8. We will refer to ~ as an indifference relauon and say
that the investor is indifferent between A and B when A ~ B. We will assume
here that the relations > and ~ satisfy some plausible axioms which would imply
rational consistency on the part of the investor in ordering his preferences.

Axioms
. Forany A, B € 2 exactly one of the following holds:
(i) A > B; (i) B = A; or (i) A ~ B.
2. The relation ~ is an equivalence relation on #; that is,

(i) A ~ A forall A € P;
(ii) forany A, B € P,if A ~ B then B ~ A; and
(iii) forany A, B,C € P,if A ~ B and B ~ C then A ~ C.

3. Forany A, B,C € P,if A > Band B > C then A > C.
4. Forany A,B,C € P

(i) if A > Band B ~ C then A > C; and
(ii) if A ~Band B > C then A > C.

5. Forany A,C € P and p € [0,1], if A ~ C and B € £ then
pA+ (1 —p)B ~ pC +(1—p)B.

6. Forany A,C € Pand p € (0,1],if A > Cand B € P then pA+(1—p)B >
pC + (1 —p)B.

7. Forany A,B,C € P,if A = C > B then there exists p € [0, 1] with
pPA+(1—-p)B ~C.

We observe first that the p in Axiom 7 is unique.

Lemmal.l SupposethatA,B,C € PwithA > C > Band pA+(1—p)B ~ C
then 0 < p < 1 and p is unique.

Proof. Trivially p # 0 or 1. Suppose that p is not unique so that there exists ¢
withgA + (1 —q)B ~ C. Without loss of generality assume that ¢ < p so that we
have 0 < p —g < 1 —¢q. But

B = u>lf+ I_—p>B and A > B,
l1—gq 1 —gq
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then by Axiom 6

However
— 1 —
pA+(1—p)B =qA +(1—q) [(%)Al—l- (——’3) B],
and by Axiom 6 again, this implies that

pA+(1—p)B>qA+(1—q)B

which gives a contradiction. I

We may now establish the existence and linearity of a function which quantifies
the preferences when those preferences are formulated consistently in that they obey
the Axioms.

Theorem 1.1  There exists a real-valued function [ : P — R with
f(A) > f(B) ifandonlyif A > B, (1.1)

and
f(pA+ (A —p)B)=pf(A)+ (1 —p)f(B) (1.2)

forany A, B € P and 0 < p < 1. Furthermore, f is unique up to affine transfor-
mations; that is, if g is any other such function satisfying (1.1) and (1.2) then there
exist real numbers o > 0 and B with g(A) = af(A) + B, forall A € P.

Proof. If we have A ~ B for all A, B € & then take f(A) = 0 and the
conclusions are immediate. So suppose that there exists a pair C, D € & with
C > D. By the axioms, for any A € & there are five possibilities: (a) A4 > C, (b)
A~C,c)C = A > D,(d) A ~ D and (e) D > A. First define f(C) =1
and f(D) = 0. We define f(A) for A satisfying each case in turn. For case (a)
there exists a unique p € (0, 1) with pA + (1 — p)D ~ C; define f(4) = 1/p.
For case (b) set f(A) = 1. For case (c) there exists a unique ¢ € (0, 1) with
qC + (1 —gq)D ~ A; define f(A) = q. For case (d) set f(A) = 0. Finally,
for case (e) there exists a unique r € (0,1) with rC + (1 —r)A ~ D and define
f(A) =—r/(1—r).

To check that f satisfies (1.1) and (1.2) for all A and B requires checking fifteen
different cases for A and B these correspond to the five instances where both 4 and
B satisfy one of the five cases (a)-(e), together with the (g) = 10 instances when A
and B are in different cases of (a)-(e).

We give the details in just one situation when both A and B are in case (c) so that
C>A>=DandC > B > D. We have f(A) = g, and f(B) = g2, say, where

A~qC+(1—qg)D and B ~ q,C + (1 —q)D.
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When g1 = g5 then A ~ B and (1.1) holds. When g; > g5 then, as in the proof of
Lemma 1.1,

G1C + (1 —q1)D > q2C + (1 —=q2)D

and thus A > B giving (1.1); similarly, when g, < g5 it follows that B >~ A. To see
that (1.2) holds, let p € (0, 1) and then by Axiom 5

pPA+ (0 —=p)B ~[p(@1C + (1—-q1)D)+ (1-p)(q2C + (1 —q2)D)]

which may be rearranged to show that

pA+ (1 —=p)B ~[(pg1 + (1 — p)g2) C + (p(1 —q1) + (1 — p)(1 — gq2)) D].

It follows from the definition of f that

f(pA+ (1 —=p)B) = pg1+ (1 —p)g2 = pf(A) + (1 — p) f(B),

which establishes (1.2) in this case.

To verify that f is unique up to affine transformations, suppose that g is any other
function satisfying (1.1) and (1.2). Because C > ) we must have g(C) > g(D),
then define B = g(D)anda = g(C)—g(D) > 0. Now suppose that A is in case (c)
sothat C > A > D. If f(A) =qthen A ~ qC + (1 —q)D and it follows that

g(A)=g(@C + (1 -q)D) = qg(C)+ (1 —q)g(D)
=qa+pB)+(0—-q)p=qa+p=caf(4d)+B.

The other cases follow in a similar fashion. [

This result establishes that for an investor with a consistent set of preferences
there exists a function f, unique up to affine transformations, which quantifies the
ordering of his preferences in the sense of (1.1). Note that it is an immediate con-
sequence of (1.2) that for gambles A, ..., Ar € P and p; = 0,1 <i <k, with
S>K_, pi = 1 the function f satisfies

k k
f(ZmAh) = pif(A); (13)

i=1 i=1

this is established by induction on k.

Suppose that I' = {yy,..., Yn} has only a finite number of outcomes. Let A; be
the probability that assigns 1 to the outcome y;, 1 = 1,..., n, and 0 to the other out-
comes and assume that A4; € P foreachi. Let A = (py,..., pn) be the probability

distribution assigning the probability p; to y; where p; = 0and >_7_, p; = 1. From
(1.3), it follows that

f(A) = Z pi [(A})

i=1
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so that f(A) is the expected value of the random variable which takes the value
f(A;) when the outcome is y;.

To put these ideas into the context in which they are typically encountered in
finance, consider an investor who is faced with a range of investments each of which
yields a payoff which is a real-valued random variable defined on some underlying
probability sample space €2, which is equipped with a probability (measure) P. Let
X be the set of real-valued random variables defined on 2 and, for each random
variable X € X, let PX denote the probability distribution on R induced by X.
Here we will take the sample space I" in the above description to be I' = R.

Suppose that the investor has a preference system (> and ~) that orders the gam-
bles (or investments) # = {P¥X : X € X} in a consistent way according to the
Axioms, then we know that there exists a function f so that PX > PY (or we may
write X > Y, equivalently) if and only if f(PX) > f(PY). Let us consider the
case where each random variable takes on a finite number of values so that the range

of X is R(X) = {x1,...,- Xm }, say; then for x € R we have
¥ P(X =x) for x e R(X),
P7({x}) =
0 for x ¢ R(X).

For any x € R denote by P~ the probability distribution which assigns 1 to the
point x and 0 to all other points of R and define a function v : R — R by setting
v(x) = f(P¥), for x € R. With this notation, the relation (1.3) is the statement that

FPX) =3 f(PHP(X =xi) =Y v(x) P(X = x;) = Ev(X).

i=1 i=1

The conclusion (1.1) then becomes
Ev(X)> Ev(Y) ifandonlyif X >Y. (1.4)

The function v(-) is known as the investor’s utility function; it is unique up to the
affine transformation implied by Theorem 1.1: that is, it is unique up to transforma-
tions of the form v(x) = av(x)+5 for constants ¢ > 0 and b, and it is determined by
his individual preference system. The relation (1.4) implies that when the investor
is faced with a number of investments with random payoff he will choose the one
with largest expected utility; in subsequent sections we will refer to an individual
acting in this way as a utility-maximizing investor. We will see in the next section
that properties of the utility function indicate details of the attitude of the investor
towards risk.

The discussion that leads to (1.4) was restricted to the situation where the random
variables take only finitely many values. The result may be extended to arbitrary ran-
dom variables but it requires consideration of closure properties of the set of gambles
and consistency of the preference Axioms under countable convex combinations of
gambles.



1.2 Utility 7

1.2.2 Ultility and risk aversion

We will assume here that the outcome of an investment is described by a random
variable X (defined on some sample space €2 with probability P) and that the prefer-
ences of an investor may be described as in the previous section by a utility function
v : R — R with the investor preferring investments with higher expected utility.
Denote by E p the expectation taken with the probability 7. We say that the investor
is risk averse when

Epv(X)<v(EpX), (1.5)

for all random variables X and all probabilities P. The investor is risk averse if and
only if his utility function is concave. To see this, for two fixed values x,y € R
and A € [0, 1] suppose that the probability P is such that P(X = x) = A and
P(X = y) = 1— A then (1.5) implies that

Av(x)+ (1 —=VMv(y) <v(Ax+ (1 —=1)y)

forall x,y € R and 0 < A < | which is the statement that v is concave; conversely,
when v is concave then (1.5) is just Jensen’s inequality. The investor being risk
averse implies that he prefers a certain (that is, deterministic) outcome of p, say, to
an investment X with mean Ep X = L.

The investor is risk neutral when Epv(X) = v(EpX) for all P and X; risk
neutrality is equivalent to the utility function v being affine and it means that the
investor is indifferent between a random outcome with mean u and a certain outcome
of 1.

The investor is risk preferring when Ep v(X) = v(Ep X) for all P and X and
it corresponds to the utility function v being convex.

To induce a risk-averse investor to undertake an investment with payoff X and
probability 7 then a compensatory risk premium, «, would have to be offered
where o would satisfy

Ev(ie + X) =v(pn) with pu=EX.

We have now suppressed the dependence on the underlying probability P in the
notation. Here the quantity « represents the (deterministic) amount that would have
to be added to the payoff of a risky investment X with mean x to make the investor
indifferent between the enhanced risky investment and the certain amount /.

A related notion is that of an insurance risk premium, £, defined by

Ev(X) = v(u — B). (1.6)

The quantity B is the amount that the risk-averse investor would be willing to pay
to avoid the ‘fair’ investment X with mean p. Note that when X and Y are two
investments with the same mean £X = EY = p and v(-) is a strictly increasing
function then X > Y if and only if By < By, where Bx and By are the respective
insurance risk premiums; this follows because

v(n — Bx) = Ev(X) > Ev(Y) = v(u — By)
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if and only if By < By.
When we expand on the left-hand side of (1.6) using Taylor’s Theorem we have

X = 2
Ev(X) = E (o) + X — ') + S0 4
VarX
=v() + ——v (W) + -

since £ X = p. Perform a similar expansion on the right-hand side of (1.6) to see
that

v(p—B) = v() — v’ () +--- .

and when we equate these two expressions, ignoring 82 and higher-order terms in f8
as well as the terms E|X — pu|* for k = 3, we obtain the approximation

L[
b 2 { v (1)

The quantity —v” () /v (1) is known as the Arrow-Pratt absolute risk aversion; it
is a measure of how averse the investor is to any investment with mean p. A related
measure of risk aversion is the quantity —Ev"”(X)/Ev'(X), known as the global
absolute risk aversion which is measuring the investor’s aversion to the particular
investment X .

The most important source of examples of utility functions is the class of hyper-
bolic absolute risk aversion functions (HARA functions) which have the form

_ Y
v(x) = 1=y ( ax +b> , (1.7)
Y 1 =p

for constants a. b and y; the range of definition is for values of x for which the term
ax/(1 —vy)+ b = 0, so usually we have b = 0. Note that the Arrow—Pratt absolute
risk aversion for the function in (1.7) is

v"(x) X 5 b\ !
v(x) \l—y a '
The following utility functions that will be used in subsequent chapters may be

viewed as special cases or limiting cases of possibly affine transformations of (1.7);
they are often chosen for their mathematical tractability.

(a) Quadratic: v(x) = x — %0.\’2: takey = 2,a = J@ ab = 1.

] VarX.

(b) Exponential: v(x) = —e %*; let y — —oo. Note that this function has
constant absolute risk aversion, a.

(c) Power: v(x) = x¥ with y > 0. Note that this is strictly concave only when
y < 1. The case y = 1 gives the risk-neutral utility.

(d) Logarithmic: v(x) = Inx. This follows from (1.7), by using I"Hopital’s rule
to see thatas y — 0, (x¥ —1)/y — Inx.



