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0ver the past two decades, software engineering has come of age. Today,
itis recognized as a legitimate discipline, one worthy of serious research,
conscientious study, and tumultuous debate. Throughout the industry, “soft-
ware engineer” has replaced “programmer” as the job title of preference.
Software engineering methods, procedures, and tools have been adopted
successfully across a broad spectrum of industry applications. Managers and
practitioners alike recognize the need for a more disciplined approach to
software development.,

But the problems discussed in the first and second editions of this book
remain with us. Many individuals and companies still develop software
haphazardly. Many professionals and students are unaware of modern
methods. And as a result, the quality of the software that we produce suf-
fers. In addition, debate and controversy about the true nature of the soft-
ware engineering approach continue. The status of software engineering is a
study in contrasts. Attitudes have changed, progress has been made, but
much remains to be done before the discipline reaches full maturity.

The third edition of Software Engineering: A Practitioner’s Approach
is intended to provide one element of a foundation from which a bridge from
adolescence to maturity can be constructed. The third edition, like the two
editions that have preceded it, is intended for both students and practi-
tioners, and maintains the same format and style as its predecessors. The
book retains its appeal as a guide to the industry professional and a compre-
hensive introduction to the student at the upper-level undergraduate or
first-year graduate level.

xix



PREFACE

Like in the earlier editions, software engineering methods are presented
in the chronological sequence that they are applied during software develop-
ment. However, the third edition is more than a simple update. The book
has been restructured to accommodate the dramatic growth in the field and
to emphasize new and important software engineering methods and tools.
Rather than maintaining a strict life-cycle view, this edition presents ge-
neric activities that are performed regardless of the software engineering
paradigm that has been chosen.

Chapters that have been retained from earlier editions have been
revised and updated to reflect current trends and techniques. Major new
sections have been added to chapters on computer system engineering,
requirements analysis fundamentals, data flow-oriented design, object-
oriented design, real-time design, software quality assurance, software test-
ing techniques, and maintenance. In addition to these revisions, eight new
chapters have been added to the third edition.

The original chapter on software project management has been removed
and replaced by three new chapters on software metrics, estimation, and
project planning. A new chapter on structured analysis presents the nota-
tion and approach for both conventional and real-time applications. A chap-
ter on object-oriented analysis and data modeling provides a detailed
treatment of these new and important modeling techniques.

The five existing chapters on software design have been further bol-
stered with a new chapter on user interface design. Software configuration
management—a topic that has become pivotal to successful software devel-
opment —is now treated in a separate chapter. The role of automation in
software engineering is considered in two new chapters on computer-aided
software engineering (CASE). One chapter emphasizes software tools and
their application and the other discusses integrated CASE environments
and the repository. The final chapter (also new) looks toward the twenty-
first century and examines changes that will affect our approach to soft-
ware engineering.

Many new examples, problems, and points to ponder have been added,
and the “Further Readings” sections (one of the more popular tidbits in ear-
lier editions) have been expanded and updated for every chapter.

The 24 chapters of the third edition have been divided into five parts.
This has been done to compartmentalize topics and assist instructors who
may not have the time to complete the entire book in one term. Part 1—
“Software —the Process and Its Management” —presents a thorough treat-
ment of software project management issues. Part IT— “System and Software
Requirements Analysis” —contains five chapters that cover analysis fun-
damentals and requirements modeling methods and notation. Part ITI —
“The Design and Implementation of Software” —presents a thorough
treatment of software design, emphasizing fundamental design criteria that
lead to high-quality systems and design methods that translate an analysis
model into a software solution. Part IV— “Ensuring, Verifying, and Main-
taining Software Integrity” —emphasizes the activities that are applied to
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ensure quality throughout the software engineering process. Part V— “The
Role of Automation” —discusses the impact of CASE on the software devel-
opment process.

The five-part organization of the third edition enables an instructor to
“cluster” topics based on available time and student need. An entire one-term
course can be built around one or more of the five parts. For example, a “de-
sign course” might emphasize only part III; a “methods course” might pre-
sent selected chapters in parts II, III, IV, and V; and a “management course”
would stress parts I and IV. By organizing the third edition in this way, I
have attempted to provide an instructor with a number of teaching options.

An Instructor’s Guide for the third edition of Software Engineering: A
Practitioner’s Approach is available from McGraw-Hill. The Instructor’s
Guide presents suggestions for conducting various types of software engi-
neering courses, recommendations for a variety of software projects to be
conducted in conjunction with a course, solutions to selected problems, and
reference to a variety of complementary teaching materials that form a “sys-
tem” for teaching software engineering.

The software engineering literature continues to expand at an explosive
rate. Once again, my thanks to the many authors of books, papers, and arti-
cles who have provided me with additional insight, ideas, and commentary
over the past decade. Many have been referenced within the pages of each
chapter. All deserve credit for their contribution to this rapidly evolving
field. I also wish to thank the reviewers of the third edition, James Cross,
Auburn University; Mahesh Dodani, University of Iowa; William S. Junk,
University of Idaho; and Laurie Werth, University of Texas. Their com-
ments and criticism have been invaluable.

The content of the third edition of Software Engineering: A Practitio-
ner’s Approach has been shaped by hundreds of industry professionals, uni-
versity professors, and students who have used the first and second editions
of the book and have taken the time to communicate their suggestions, criti-
cisms, and ideas. In addition, my personal thanks go to our many industry
clients throughout North America and Europe, who certainly teach me as
much or more than I can teach them.

Finally, to Barbara, Mathew, and Michael, my love and thanks for toler-
ating my travel schedule, understanding the evenings at the office, and
encouraging still another edition of “the book.”

Roger S. Pressman
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