SOFTWARE ENGINEERING

A PRACTITIONER'S APPROACH
THIRD EDITION

ROGER S. PRESSMAN

THIRD EDITION

Roger S. Pressman, Ph.D.

McGraw-Hill, Inc.

New York St. Louis San Francisco Auckland Bogoti
Caracas Lisbon London Madrid Mexico City Milan
Montreal New Delhi San Juan Singapore

Sydney Tokyo Toronto

To my parents .

SOFTWARE ENGINEERING
A PRACTITIONER’S APPROACH

Copyright © 1992, 1987, 1982 by McGraw-Hill, Inc. All rights reserved. Printed
in the United States of America. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a data base or retrieval
system, without the prior written permission of the publisher.

90 DOC/DOC 99876

ISBN 0-07-050814-3
This book is printed on acid-free paper.

This book was set in New Century Schoolbook

by Beacon Graphics Corporation.

The editors were Eric M. Munson and Bernadette Boylan;
the designer was Jo Jones.

New drawings were done by Fine Line Illustrations, Inc.
Cover painting by Joseph Gillians.

R.R. Donnelley & Sons Company was printer and binder.

Library of Congress Cataloging-in-Publication Data

Pressman, Roger S.
Software engineering: a practitioner’s approach / by Roger S.
Pressman
p. cm.

Includes bibliographical references and index.

ISBN 0-07-050814-3

1. Software engineering. 1. Title.
QA76.758.P75 1992 91-11321
005.1—dc20

Roger S. Pressman is an internationally recognized consultant and author
in software engineering. He received a B.S.E. (cum laude) from the Uni-
versity of Connecticut, an M.S. from the University of Bridgeport, and a
Ph.D. in engineering from the University of Connecticut, and has over two
decades of industry experience, holding both technical and management
positions with responsibility for the development of software for engineered
products and systems.

As an industry practitioner and manager, Dr. Pressman worked on the
development of CAD/CAM systems for advanced engineering and manufac-
turing in aerospace applications. He has also held positions with responsibil-
ity for scientific and systems programming.

In addition to his industry experience, Dr. Pressman was Bullard Asso-
ciate Professor of Computer Engineering at the University of Bridgeport
and Director of the University’s Computer-Aided Design and Manufac-
turing Center. His research interests included software engineering meth-
ods and tools.

Dr. Pressman is President of R.S. Pressman & Associates, Inc., a con-
sulting firm specializing in software engineering methods and training. He
serves as principal consultant, specializing in helping companies establish
effective software engineering practices. In addition to consulting services
rendered to many Fortune 500 clients, the company markets a wide variety
of software engineering training products and services. Dr. Pressman has
authored three videotape training series, Software Engineering Training
Curriculum, A CASE Curriculum, and Essential Software Engineering,
that are distributed worldwide.

it
]

ABOUT THE AUTHOR

Dr. Pressman has written many technical papers, is a regular contribu-
tor to industry newsletters, and is the author of five books. In addition to
Software Engineering: A Practitioner’s Approach, he has written Making
Software Engineering Happen (Prentice-Hall), a book that addresses the
management problems associated with implementing software engineering
technology, Software Engineering: A Beginner’s Guide (McGraw-Hill), an
introductory text, and Software Shock (Dorset House), a book that focuses
on software and its impact on business and society. Dr. Pressman is a mem-
ber of the ACM, IEEE and Tau Beta Pi, Phi Kappa Phi, Pi Tau Sigma, and
Eta Kappa Nu.

0ver the past two decades, software engineering has come of age. Today,
itis recognized as a legitimate discipline, one worthy of serious research,
conscientious study, and tumultuous debate. Throughout the industry, “soft-
ware engineer” has replaced “programmer” as the job title of preference.
Software engineering methods, procedures, and tools have been adopted
successfully across a broad spectrum of industry applications. Managers and
practitioners alike recognize the need for a more disciplined approach to
software development.,

But the problems discussed in the first and second editions of this book
remain with us. Many individuals and companies still develop software
haphazardly. Many professionals and students are unaware of modern
methods. And as a result, the quality of the software that we produce suf-
fers. In addition, debate and controversy about the true nature of the soft-
ware engineering approach continue. The status of software engineering is a
study in contrasts. Attitudes have changed, progress has been made, but
much remains to be done before the discipline reaches full maturity.

The third edition of Software Engineering: A Practitioner’s Approach
is intended to provide one element of a foundation from which a bridge from
adolescence to maturity can be constructed. The third edition, like the two
editions that have preceded it, is intended for both students and practi-
tioners, and maintains the same format and style as its predecessors. The
book retains its appeal as a guide to the industry professional and a compre-
hensive introduction to the student at the upper-level undergraduate or
first-year graduate level.

xix

PREFACE

Like in the earlier editions, software engineering methods are presented
in the chronological sequence that they are applied during software develop-
ment. However, the third edition is more than a simple update. The book
has been restructured to accommodate the dramatic growth in the field and
to emphasize new and important software engineering methods and tools.
Rather than maintaining a strict life-cycle view, this edition presents ge-
neric activities that are performed regardless of the software engineering
paradigm that has been chosen.

Chapters that have been retained from earlier editions have been
revised and updated to reflect current trends and techniques. Major new
sections have been added to chapters on computer system engineering,
requirements analysis fundamentals, data flow-oriented design, object-
oriented design, real-time design, software quality assurance, software test-
ing techniques, and maintenance. In addition to these revisions, eight new
chapters have been added to the third edition.

The original chapter on software project management has been removed
and replaced by three new chapters on software metrics, estimation, and
project planning. A new chapter on structured analysis presents the nota-
tion and approach for both conventional and real-time applications. A chap-
ter on object-oriented analysis and data modeling provides a detailed
treatment of these new and important modeling techniques.

The five existing chapters on software design have been further bol-
stered with a new chapter on user interface design. Software configuration
management—a topic that has become pivotal to successful software devel-
opment —is now treated in a separate chapter. The role of automation in
software engineering is considered in two new chapters on computer-aided
software engineering (CASE). One chapter emphasizes software tools and
their application and the other discusses integrated CASE environments
and the repository. The final chapter (also new) looks toward the twenty-
first century and examines changes that will affect our approach to soft-
ware engineering.

Many new examples, problems, and points to ponder have been added,
and the “Further Readings” sections (one of the more popular tidbits in ear-
lier editions) have been expanded and updated for every chapter.

The 24 chapters of the third edition have been divided into five parts.
This has been done to compartmentalize topics and assist instructors who
may not have the time to complete the entire book in one term. Part 1—
“Software —the Process and Its Management” —presents a thorough treat-
ment of software project management issues. Part IT— “System and Software
Requirements Analysis” —contains five chapters that cover analysis fun-
damentals and requirements modeling methods and notation. Part ITI —
“The Design and Implementation of Software” —presents a thorough
treatment of software design, emphasizing fundamental design criteria that
lead to high-quality systems and design methods that translate an analysis
model into a software solution. Part IV— “Ensuring, Verifying, and Main-
taining Software Integrity” —emphasizes the activities that are applied to

PREFACE

xXXi

ensure quality throughout the software engineering process. Part V— “The
Role of Automation” —discusses the impact of CASE on the software devel-
opment process.

The five-part organization of the third edition enables an instructor to
“cluster” topics based on available time and student need. An entire one-term
course can be built around one or more of the five parts. For example, a “de-
sign course” might emphasize only part III; a “methods course” might pre-
sent selected chapters in parts II, III, IV, and V; and a “management course”
would stress parts I and IV. By organizing the third edition in this way, I
have attempted to provide an instructor with a number of teaching options.

An Instructor’s Guide for the third edition of Software Engineering: A
Practitioner’s Approach is available from McGraw-Hill. The Instructor’s
Guide presents suggestions for conducting various types of software engi-
neering courses, recommendations for a variety of software projects to be
conducted in conjunction with a course, solutions to selected problems, and
reference to a variety of complementary teaching materials that form a “sys-
tem” for teaching software engineering.

The software engineering literature continues to expand at an explosive
rate. Once again, my thanks to the many authors of books, papers, and arti-
cles who have provided me with additional insight, ideas, and commentary
over the past decade. Many have been referenced within the pages of each
chapter. All deserve credit for their contribution to this rapidly evolving
field. I also wish to thank the reviewers of the third edition, James Cross,
Auburn University; Mahesh Dodani, University of Iowa; William S. Junk,
University of Idaho; and Laurie Werth, University of Texas. Their com-
ments and criticism have been invaluable.

The content of the third edition of Software Engineering: A Practitio-
ner’s Approach has been shaped by hundreds of industry professionals, uni-
versity professors, and students who have used the first and second editions
of the book and have taken the time to communicate their suggestions, criti-
cisms, and ideas. In addition, my personal thanks go to our many industry
clients throughout North America and Europe, who certainly teach me as
much or more than I can teach them.

Finally, to Barbara, Mathew, and Michael, my love and thanks for toler-
ating my travel schedule, understanding the evenings at the office, and
encouraging still another edition of “the book.”

Roger S. Pressman

Preface

PART ONE SOFTWARE —THE PROCESS AND ITS MANAGEMENT

CHAPTER 1: SOFTWARE AND SOFTWARE ENGINEERING

1.1

1.2

1.3

SN

1.6

THE IMPORTANCE OF SOFTWARE

1.1.1 The Evolving Role of Software
1.1.2 An Industry Perspective

1.1.3 An Aging Software Plant
SOFTWARE

1.2.1 Software Characteristics

1.2.2 Software Components

1.2.3 Software Applications
SOFTWARE: A CRISIS ON THE HORIZON
1.3.1 Problems

1.3.2 Causes

SOFTWARE MYTHS

SOFTWARE ENGINEERING PARADIGMS
1.5.1 Software Engineering: A Definition
1.5.2 The Classic Life Cycle

1.5.3 Prototyping

1.5.4 The Spiral Model

1.5.5 Fourth-Generation Techniques
1.5.6 Combining Paradigms

A GENERIC VIEW OF SOFTWARE ENGINEERING

XiX

vi

CHAPTER 2:

CHAPTER 3:

CONTENTS

1.7 SUMMARY 36
REFERENCES 37
PROBLEMS AND POINTS TO PONDER 37
FURTHER READINGS 38
PROJECT MANAGEMENT: SOFTWARE METRICS 4]
2.1 THE PROJECT MANAGEMENT PROCESS 42
2.1.1 Beginning a Software Project 42
2.1.2 Measures and Metrics 43
2.1.3 Estimation 43
2.1.4 Risk Analysis 44
2.1.5 Scheduling 44
2.1.6 Trocking and Control 44
2.2 METRICS FOR SOFTWARE PRODUCTIVITY AND QUALITY 45
2.3 MEASURING SOFTWARE 45
2.3.1 Size-Oriented Metrics 47
2.3.2 Function-Oriented Metrics 48
2.4 METRICS FOR SOFTWARE QUALITY 51
2.4.1 An Overview of Factors that Affect Quality 52
2.4.2 Meosuring Quality 52
2.5 RECONCILING DIFFERENT METRICS APPROACHES 54
2.6 INTEGRATING METRICS WITHIN THE SOFTWARE
ENGINEERING PROCESS 56
2.6.1 Arguments for Software Metrics 56
2.6.2 Establishing o Boseline 57
2.6.3 Metrics Collection, Computation, and Evaluation 58
2.7 SUMMARY 61
REFERENCES 41
PROBLEMS AND POINTS TO PONDER 62
FURTHER READINGS 63
PROJECT MANAGEMENT: ESTIMATION 65
3.1 OBSERVATIONS ON ESTIMATING 65
3.2 PRCIJECT PLANNING OBJECTIVES 67
3.3 SOFTWARE SCOPE 67
3.4 RESOURCES 70
3.4.1 Human Resources 71
3.4.2 Hardware Resources 71
3.4.3 Software Resources 71
3.4.4 Reusability 74
3.5 SOFTWARE PROJECT ESTIMATION 75
3.6 DECOMPOSITION TECHNIQUES 76
3.6.1 LOC and FP Estimation 76
3.6.2 An Example 78
3.6.3 Effort Estimation 81

3.6.4 An Example 82

CONTENTS

PART TWO

3.7

3.8
3.9

EMPIRICAL ESTIMATION MODELS
3.7.1 COCOMO

3.7.2 Putnam Estimation Model
3.7.3 Function-Point Models
AUTOMATED ESTIMATION TOOLS
SUMMARY

REFERENCES
PROBLEMS AND POINTS TO PONDER
FURTHER READINGS

CHAPTER 4: PROJECT MANAGEMENT: PLANNING

4.1
4.2

4.3

4.4
4.5
4.6
4.7
4.8

PROJECT PLANNING —REVISITED
RISK ANALYSIS

4.2.1 Risk ldentification

4.2.2 Risk Projection

4.2.3 Risk Assessment

4.2.4 Risk Management and Monitoring
SOFTWARE PROJECT SCHEDULING
4.3.1 People-Work Relationships
4.3.2 Task Definition and Parallelism
4.3.3 Effort Distribution

4.3.4 Scheduling Methods

4.3.5 A Scheduling Example

4.3.6 Project Tracking and Control
SOFTWARE ACQUISITION
SOFTWARE RE-ENGINEERING
ORGANIZATIONAL PLANNING

THE SOFTWARE PROJECT PLAN
SUMMARY

REFERENCES
PROBLEMS AND POINTS TO PONDER
FURTHER READINGS

SYSTEM AND SOFTWARE REQUIREMENTS ANALYSIS

CHAPTER 5: COMPUTER SYSTEM ENGINEERING

5.1
5.2

53

COMPUTER-BASED SYSTEMS
COMPUTER SYSTEMS ENGINEERING

5.2.1 Hardware and Hardware Engineering

5.2.2 Software and Software Engineering

5.2.3 Human Factors and Human Engineering
5.2.4 Databases and Database Engineering

SYSTEM ANALYSIS

5.3.1 Identification of Need
5.3.2 Feasibility Study
5.3.3 Economic Analysis

vii

83
84
87
89
89
21
92
93
94

95

96

96

97

98

99
101
102
104
105
106
107
108
114
117
119
120
122
124
124
125
127

131

132
134
137
140
144
145
146
147
148
149

viii

CHAPTER 6:

CHAPTER 7:

5.3.4 Technical Analysis
5.3.5 Allocation and Trade-offs
5.4 MODELING THE SYSTEM ARCHITECTURE
5.4.1 Architecture Diograms
5.4.2 Specification of the System Architecture
5.5 SYSTEM MODELING AND SIMULATION
5.6 SYSTEM SPECIFICATION
5.7 SYSTEM SPECIFICATION REVIEW
5.8 SUMMARY
REFERENCES
PROBLEMS AND POINTS TO PONDER
FURTHER READINGS

REQUIREMENTS ANALYSIS FUNDAMENTALS

6.1 REQUIREMENTS ANALYSIS
6.1.1 Anclysis Tasks
6.1.2 The Analyst

6.2 PROBLEM AREAS

6.3 COMMUNICATION TECHNIQUES
6.3.1 Initiating the Process

6.3.2 Facilitated Application Specification Techniques

6.4 ANALYSIS PRINCIPLES
6.4.1 The Information Domain
6.4.2 Modeling
6.4.3 Partitioning
6.4.4 Essential and Implementation Views
6.5 SOFTWARE PROTOTYPING
6.5.1 A Prototyping Scenario
6.5.2 Prototyping Methods and Tools
6.6 SPECIFICATION
6.6.1 Specification Principles
6.6.2 Representation
6.6.3 The Software Requirements Specification
6.7 SPECIFICATION REVIEW
6.8 SUMMARY
REFERENCES
PROBLEMS AND POINTS TO PONDER
FURTHER READINGS

STRUCTURED ANALYSIS AND ITS EXTENSIONS

7.1 A BRIEF HISTORY
7.2 BASIC NOTATION AND ITS EXTENSIONS
7.2.1 Dato Flow Diagrams
7.2.2 Extensions for Real-Time Systems
7.2.3 Ward and Mellor Extensions
7.2.4 Hoatley and Pirbhai Extensions
7.2.5 Behavioral Modeling
7.2.6 Extensions for Data-Intensive Applications

CONTENTS

154
156
159
159
162
164
165
166
168
168
169
170

173

174
174
176
177
178
179
180
184
185
186
187
189
190
190
192
194
194
197
198
200
202
203
203
204

207

208
208
209
212
212
215
218
220

CONTENTS

CHAPTER 8:

CHAPTER 9:

7.3 THE MECHANICS OF STRUCTURED ANALYSIS
7.3.1 Creating a Data Flow Model
7.3.2 Creating a Control Flow Model
7.3.3 The Conftrol Specification
7.3.4 The Process Specification

7.4 THE REQUIREMENTS DICTIONARY

7.5 STRUCTURED ANALYSIS AND CASE

7.6 SUMMARY

REFERENCES

PROBLEMS AND POINTS TO PONDER

FURTHER READINGS

OBJECT-ORIENTED ANALYSIS AND DATA MODELING

8.1 OBJECT-ORIENTED CONCEPTS
8.1.1 identifying Obijects
8.1.2 Specifying Attributes
8.1.3 Defining Operations
8.1.4 Interobject Communication
8.1.5 Findlizing the Object Definition

8.2 OBIECT-ORIENTED ANALYSIS MODELING
8.2.1 Clossification and Assembly Structures
8.2.2 Defining Subjects
8.2.3 Instance Connections and Message Paths
8.2.4 OOA and Prototyping

8.3 DATA MODELING
8.3.1 Data Gbijects, Attributes, and Relationships
8.3.2 Entity-Relationship Diagrams

8.4 SUMMARY

REFERENCES

PROBLEMS AND POINTS TO PONDER

FURTHER READINGS

ALTERNATIVE ANALYSIS TECHNIQUES AND
FORMAL METHODS

9.1 REQUIREMENTS ANALYSIS METHODS
2.1.1 Common Characteristics
9.1.2 Ditterences in Analysis Methods
9.2 DATA STRUCTURE-ORIENTED METHODS
9.3 DATA STRUCTURED SYSTEMS DEVELOPMENT
9.3.1 Warnier Diagrams
?.3.2 The DSSD Approach
9.3.3 Application Context
9.3.4 Application Functions
9.3.5 Application Results
9.4 JACKSON SYSTEM DEVELOPMENT
2.4.1 The Entity Action Step
9.4.2 The Entity Structure Step
9.4.3 The Initial Model Step

221
221
224
227
228
229
234
234
235
235
237

239

240
242
245
247
247
249
250
250
252
254
254
256
257
260
262
263
263
264

267

268
268
269
270
270
270
272
273
273
276
277
278
279
280

9.5
9.6

CONTENTS

SADT
FORMAL SPECIFICATION TECHNIQUES
9.6.1

Current Status of Formal Methods

9.6.2 The Attributes of Formal Specification Languages

9.7

9.8

A FORMAL SPECIFICATION IN Z
9.7.1
9.7.2
9.7.3
9.7.4
9.7.5
9.7.6
AUTOMATED TECHNIQUES FOR REQUIREMENTS ANALYSIS
9.8.1
9.8.2
9.8.3
9.8.4
9.8.5
9.8.6

About the Kernel

Documentation

Kernel States

Background Processing

Interrupt Handling

Formal Methods—The Road Ahead

Software Requirements Engineering Methodology
PSL/PSA

TAGS

Specification Environments

Tools for Formal Methods

Automated Technigues—A Summary

9.9 SUMMARY

REFERENCES

PROBLEMS AND POINTS TO PONDER
FURTHER READINGS

PART THREE

THE DESIGN AND IMPLEMENTATION OF SOFTWARE

CHAPTER 10: SOFTWARE DESIGN FUNDAMENTALS

10.1
10.2

10.3

10.4

10.5
10.6

SOFTWARE DESIGN AND SOFTWARE ENGINEERING
THE DESIGN PROCESS

10.2.1 Design and Software Quality
10.2.2 The Evolution of Software Design
DESIGN FUNDAMENTALS

10.3.1 Abstraction

10.3.2 Refinement

10.3.3 Modularity

10.3.4 Software Architecture

10.3.5 Control Hierarchy

10.3.6 Data Structure

10.3.7 Software Procedure

10.3.8 Information Hiding

EFFECTIVE MODULAR DESIGN

10.4.1 Module Types

10.4.2 Functional Independence

10.4.3 Cohesion

10.4.4 Coupling

DATA DESIGN

ARCHITECTURAL DESIGN

283
287
287
288
289
290
291
292
297
300
303
304
305
306
306
307
307
308
309
309
311
31

315

316
317
318
319
319
320
323
323
325
326
328
330
331
332
332
333
334
336
338
340

CONTENTS

CHAPTER 11:

CHAPTER 12:

10.7 PROCEDURAL DESIGN
10.7.1 Structured Programming
10.7.2 Graphical Design Notation
10.7.3 Tobular Design Notation
10.7.4 Program Design Language
10.7.5 A PDL Example
10.7.6 Comparison of Design Notation

10.8 DESIGN DOCUMENTATION

10.9 SUMMARY

REFERENCES

PROBLEMS AND POINTS TO PONDER

FURTHER READINGS

DATA FLOW-ORIENTED DESIGN

11.1 DESIGN AND INFORMATION FLOW
11.1.1 Contributors
11.1.2 Areas of Application
11.2 DESIGN PROCESS CONSIDERATIONS
11.2.1 Transform Flow
11.2.2 Transaction Flow
11.2.3 A Process Abstract
11.3 TRANSFORM ANALYSIS
11.3.1 An Example
11.3.2 Design Steps
11.4 TRANSACTION ANALYSIS
11.4.17 An Example
11.4.2 Design Steps
11.5 DESIGN HEURISTICS
11.6 DESIGN POSTPROCESSING
11.7 DESIGN OPTIMIZATION
11.8 SUMMARY
REFERENCES
PROBLEMS AND POINTS TO PONDER
FURTHER READINGS

OBJECT-ORIENTED DESICGN

12.1 ORIGINS OF OBJECT-ORIENTED DESIGN
12.2 OBIJECT-ORIENTED DESIGN CONCEPTS

12.2.1 Objects, Operations, and Messages

12.2.2 Design lIssues

12.2.3 Classes, Instances, and Inheritance

12.2.4 Obiject Descriptions
12.3 OBJECT-ORIENTED DESIGN METHODS
12.4 CLASS AND OBJECT DEFINITION
12,5 REFINING OPERATIONS

12.6 PROGRAM COMPONENTS AND INTERFACES

xi

341
341
342
347
349
355
357
359
362
362
364
365

367

367
368
368
369
369
370
371
372
372
373
382
382
383
387
389
390
391
391
392
394

395

396
397
397
398
399
401
402
404
407
408

CHAPTER 13:

CHAPTER 14:

12.7 A NOTATION FOR OOD
12.7.1 Representing Class and Object Relationships
12.7.2 Modularizing the Design

12.8 IMPLEMENTATION DETAIL DESIGN

12.9 AN ALTERNATIVE OBJECT-ORIENTED DESIGN STRATEGY

12.9.1 Design Steps

12.9.2 A Design Example
12.10 INTEGRATING OGOD WITH SA/SD
12.17 SUMMARY
REFERENCES
PROBLEMS AND POINTS TO PONDER
FURTHER READINGS

DATA-ORIENTED DESIGN METHODS

13.1 DESIGN AND DATA STRUCTURE
13.1.1 Contributors
13.1.2 Areas of Application
13.1.3 Data Structure versus Data Flow Techniques
13.1.4 Data Structure versus Object-Oriented Design
13.2 DESIGN PROCESS CONSIDERATIONS
13.3 JACKSON SYSTEM DEVELOPMENT
13.3.1 JSD Design Steps
13.3.2 The Function Step
13.3.3 System Timing Step
13.3.4 The Implementation Step
13.3.5 Procedural Representation
13.4 DATA STRUCTURED SYSTEMS DEVELOPMENT
13.4.1 A Simplified Design Approach
13.4.2 Derivation of Logical Output Structure
13.4.3 Derivation of Logical Process Structure
13.4.4 Complex Process Logic
13.5 SUMMARY
REFERENCES
PROBLEMS AND POINTS TO PONDER
FURTHER READINGS

USER INTERFACE DESIGN

14.1 HUMAN FACTORS
14.1.1 Fundamentals of Human Perception
14.1.2 Human Skill Level and Behavior
14.1.3 Tasks and Human Factors
14.2 STYLES OF HUMAN-COMPUTER INTERACTION
14.3 HUMAN-COMPUTER INTERFACE DESIGN
14.3.1 Interface Design Models
14.3.2 Task Andlysis and Modeling
14.3.3 Design Issues
14.3.4 Implementation Tools
14.3.5 Design Evaluation

CONTENTS

410
410
411
414
416
416
418
422
424
425
426
427

429

429
430
431
431
431
432
432
434
437
442
443
445
446
447
448
449
451
453
454
455
456

457

458
458
459
460
461
463
464
465
467
470
471

CONTENTS

CHAPTER 15:

CHAPTER 16:

14.4 INTERFACE DESIGN GUIDELINES

14.41
14.4.2
14.4.3

General Interaction
Information Display
Data Input

14.5 INTERFACE STANDARDS
14.6 SUMMARY

REFERENCES

PROBLEMS AND POINTS TO PONDER
FURTHER READINGS

REAL-TIME DESIGN

15.1 SYSTEM CONSIDERATIONS
15.2 REAL-TIME SYSTEMS

15.2.1
15.2.2
15.2.3
15.2.4
15.2.5
15.2.6

Integration and Performance Issues
Interrupt Handling

Real-Time Databases

Real-Time Operating Systems

Real-Time Languages

Task Synchronization and Communication

15.3 ANALYSIS AND SIMULATION OF REAL-TIME SYSTEMS

15.3.1
15.3.2

Mathematical Tools for Real-Time System Analysis
Simulation and Modeling Techniques for
Real-Time Systems

15.4 DESIGN METHODS
15.5 A DATA FLOW-ORIENTED DESIGN METHOD

15.5.1

15.5.2
15.5.3
15.5.4

Reguirements of a Real-Time Systermns
Design Method

DARTS

Task Design

Example of the DARTS Design Method

15.6 SUMMARY

REFERENCES

PROBLEMS AND POINTS TO PONDER
FURTHER READINGS

PROGRAMMING LANGUAGES AND CODING

16.1 THE TRANSLATION PROCESS
16.2 PROGRAMMING LANGUAGE CHARACTERISTICS

16.2.1
16.2.2
16.2.3
16.2.4
16.2.5

A Psychological View

A Syntactic/Semantic Model

An Engineering View

Choosing a Language

Programming Languages and Software Engineering

16.3 PROGRAMMING LANGUAGE FUNDAMENTALS

16.3.1
16.3.2
16.3.3
16.3.4

Data Types and Data Typing
Subprograms

Control Structures

Support for Object-Criented Approaches

xiii

473
473
474
475
476
477
477
478
479

481

482
482
483
484
486
486
488
488
489
490

494
500
500

501
502
504
504
509
509
510
511

513

514
514
515
517
518
519
521
522
523
524
524
525

