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INTRODUCTION

Few of us can any longer keep up with the flood of scientific literature, even
in specialized subfields. Any attempt to do more and be broadly educated
with respect to a large domain of science has the appearance of tilting at
windmills. Yet the synthesis of ideas drawn from different subjects into new,
powerful, general concepts is as valuable as ever, and the desire to remain
educated persists in all scientists. This series, Advances in Chemical Physics,
is devoted to helping the reader obtain general information about a wide
variety of topics in chemical physics, a field that we interpret very broadly.
Our intent is to have experts present comprehensive analyses of subjects of
interest and to encourage the expression of individual points of view. We hope
that this approach to the presentation of an overview of a subject will both
stimulate new research and serve as a personalized learning text for beginners
in a field.

STUART A. RICE
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ABSTRACT

We offer a nonexhaustive presentation of the advances in the field of the integral
equation theories (IETs) in terms of bridge functions, by describing their
application to the determination of structural and thermodynamic properties of
simple fluids. After having exposed some basic necessary definitions in the
structural description of fluid systems, various IETs are first presented, by
recalling their basic expressions and underlying physical assumptions. In this
context, a special attention is devoted to the thermodynamic consistency concept,
and to the role that this natural constraint plays with the improvement of their
performances. In this framework, we shall have as a specific purpose in this
presentation to investigate the 7— and g—space structural predictions of the IETs
together with their relationship with thermodynamics. It is already known that
these older theories, that provide in principle a direct source of information, yield
however only qualitative agreement for correlation functions, because of
suffering of a severe thermodynamic inconsistency. Improved closure relations,
the self-consistent integral equation theories (SCIETS) are then introduced. Their
applications are examined and systematically compared against related computer
simulation data, when available. Satisfying to a single thermodynamic
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consistency condition provides better correlation functions, but this criterion is
not always necessarily sufficient in obtaining accurate description of bridge
functions, that are shown to be sensitive to the long-range part of the potential.
Introducing supplementary tools, like partitioning schemes for the interaction
potential, is needed. Furthermore, the calculation of the excess chemical
potential and of the related entropic quantities requires the best possible bridge
function B(r) and, at least, the fulfilment of a second thermodynamic consistency
condition. In this framework, recent developments are presented. Among
numerically solvable theories, only few of them turn out to be accurate in the
reproduction of the correlation functions up to the bridge function. These
SCIETs are capable of providing accurate predictions for fluid models as
compared to simulation calculations. The accuracy of theoretical predictions is
also discussed for real systems involved with many-body forces with the aim of
systematic assessment of theories. The g—space structural predictions of the
latters are of primary importance since they are measurable quantities. In order to
provide a complete scenario of calculations in classical fluids, both thermo-
dynamic and structural properties are usually presented in parallel with the
available experimental measurements and with computer simulation data.

I. INTRODUCTION

The primary goal of liquid theory is to predict the macroscopic properties of
classical fluids from the knowledge of the interaction potential between the
constituent particles of a liquid. This area is a very challenging task, because liquids
are of vital interest for technology, physics, and chemistry, and for life itself.
Seventy years ago, the very existence of liquids seemed a little mysterious. Today,
one can make fairly precise predictions of the microscopic and macroscopic static
properties of liquids. More than a century of effort since the pioneering work of van
der Waals has led to a complete basic understanding of the physicochemical
properties of liquids. Advances in statistical mechanics (integral equations,
perturbation theories, computer simulation), in knowledge of intermolecular
forces and in experimental techniques have all contributed to this. In this
presentation, we will be concerned with recent advances in the liquid theory
devoted to the description of simple classical fluids properties as determined by
means of integral equation theories (IETs).

The availability of a satisfactory theory for simple fluids properties means
that these last can successfully be predicted and described at the microscopic
statistical mechanics level. This means, once the interparticle law force for a
certain fluid has been fixed, one in principle should be able to determine, by
means of exact equations relating the interaction potential to some structural
functions and thermodynamical quantities, the properties the system will
exhibit. However, in practice, a certain number of approximations need to be
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done in such a theoretical approach, which can be recalled according to the
following uncontournable aspects:

1. In order to study a system, one first has to assume a model interaction
potential between the particles that are defined as the constituents of the
fluid under investigation. Such a modelization is necessary if it is desired
not to perform a quantum mechanical description of the system at the
level of a first principle Hamiltonian composed of elementary forces. In
the latter case, the ab initio molecular dynamics technique, developed by
Car and Parrinello [1, 2], was revealed to be a powerful investigation tool
that was adopted by many authors the last two decades.

2. The physical properties of the fluid model are then calculated through
either classical computer simulation techniques, or by some adequate
liquid-state theories.

On the one hand, as far as classical computer simulation is concerned, this
kind of approach provides, for a given potential model, virtually exact results
for structural and thermodynamic properties accompanied with a statistical
error, which essentially is due to the use of a finite number of particles [3 and
references cited therein]. However, the evaluation of desired quantities requires
considerable computational times. Other difficulties arise in the simulation of
near critical thermodynamic states, since correlations between the constituents
tend to extend over “infinite” distances while the simulation cell edge is at most
a few ten angstroms [4]. However, despite these problems, it is observed that
considerable progresses have been made recently in the simulation calculations
thanks to a number of computational strategies derived by several authors
together with the increasing power of computers. Nowadays, large-scale
simulations [5], in which the calculation of the forces are parallel, allow us to
simulate systems with an increasing number of particles in the cell and are
suitable to study physical systems involved with many-body forces.

On the other hand, equilibrium statistical mechanics offers appropriate
theoretical tools for a complete microscopic determination of properties under
interest. In fact, basic thermodynamic quantities, such as pressure and internal
energy, wherefrom most of the other thermodynamic quantities involved in the
description of the fluid can be determined, are expressed in terms of a structural
function that measures the degree of correlation between pairs of particles [6]. For
a homogenous and isotropic system, this is the well-known “pair correlation
function” (pcf) g(r). Integral equation theories for the liquid structure, whose
purpose is to determine this function, have developed rapidly in the late 1980s and
early 1990s from atomic to more complex systems. The pcf, which describes the
local arrangement of particles, is in fact related to the interparticle potential by
exact equations that involve the so-called ‘“bridge function” B(r) [7], which, as
will be seen further, is expressed as a density p infinite series weighted in terms of



RECENT ADVANCES IN THE FIELD OF INTEGRAL EQUATION THEORIES 5

irreductible diagrams. Unfortunately, it is not expressed in terms of the pcf itself in
a closed form. At this stage, some approximations must be introduced in order to
solve the structural problem. To study this problem, an integral equation is
typically generated in which the pcf g(r) (or some other structural function closely
related to it) is the a priori unknown function to be determined. It is obvious from
what has been said that the IETs introduce in the description of a fluid model a
certain degree of approximation with respect to the “exact” computer simulation
treatment. Therefore, thermodynamic and structural properties predicted by the
theories must be conveniently and systematically assessed against the
corresponding results provided by molecular dynamics (MD) or Monte Carlo
(MC) calculations. For a long time, these IETs have suffered from a fundamental
shortcoming, the lack of an accurate closure relation [8]. Hence, the integral
equation method has seemed to be a relative weak field among its sister methods.

Nevertheless, as will be seen, IETs possess their own peculiarities that make
them an irreplaceable tool of investigation of the fluid state. In fact, note first
that the approximations made within IET about the form of the pair correlation
function, and about its relationship with the potential either amount to, or
explicitly express, some simplifying representation of the full many-body
structural problem [7, 9—11]. In this respect, comparison with the simulation
results possibly followed by that with experimental data for some real system
mimicked by the model also implies a test of the hypothesis made on structural
correlations and of the physical picture adopted. Also, the solution of an IET is
not in general conditioned to the use of a finite system, as it happens with
simulation. This advantage is very precious. It allows us, for example, to obtain
in a very short time results at the low wavelength limit that can be directly
compared to Small Angle Neutron Scattering (SANS) measurements [12-15],
while the numerical simulation requires the treatment of very large cells, with
increasing large execution times. Quite frequently, IETs can be solved only
through numerical procedures that require the use of spatial grids whose extent
is by necessity finite. The grid size, however, is generally much larger than
typical simulation box sizes. Moreover, such numerical solutions usually do
require shorter computational times than comparably accurate simulations.
Another advantage of IETs is that these theories can be inverted. Contrary to the
usual scheme, where the structure is calculated from a hypothetical interaction
potential, the inverted method [16] allows us to determine with a reasonable
accuracy an effective potential from the experimental structure factor S(q), that
is the Fourier transform of g(r). It is not difficult to guess that the more the IET
is accurate, the more the extracted inverted potential is confident. This scheme
has proved to be a precious source of information for atomic fluids, and is
somehow the counterpart of the Car—Parrinello approach.

Itis probably an understatement to say that the quest in integral equation studies
is the search for accurate closures. Perhaps closures constitute the most
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obstreperous bottleneck in achieving high accuracy and furthering advances for
IETs. The study of B(r) and the development of new and better closure relations
for this function have been the subject of increasing interest. As attested in the
literature, this is over the two last decades that several attempts have been made to
improve upon these closure relations and to extend the range of validity of integral
equation theory. As seen in the following sections, the “bridge function” is one of
the keywords in liquid theory. For example, the configurational chemical potential
depends explicitly on the bridge function B(r) and has been shown [8] that its
calculation is mainly affected by the contribution of B(r) inside the core region
(98% in the case of hard-sphere fluid). That is one of the reasons why a detailled
knowledge of the bridge function is crucial to perform such a calculation.

Answers to the following questions are sought. (1) Can a closure, or several
closures, be found to satisfy theorems for simple liquids? (2) If such closures
exist, will they be improvements over conventional ones? Do they give better
thermodynamic and structural information? (3) Will such closure relations
render the IE method more competitive with respect of computer simulations
and with other methods of investigation?

Here, we propose to give an overview of the present status of the applications
of self-consistent integral equation theories (SCIETs) aimed to predict the
properties of simple fluids and of some real systems that require pair and many-
body interactions. We will not therefore be concerned with a number of attempts
that have been achieved by various authors to extend the IETs approach to fluids
with quantum effects, either with several existing studies of specific systems, as,
for example, liquid metals, whose treatment yields a modification of the IETs
formalism. Our attention will be restricted to simple fluid models, whose
description is, however, an essential step to be reached before investigating
more complex systems.

In order to introduce basic equations and quantities, a preliminary survey is
made in Section II of the statistical mechanics foundations of the structural
theories of fluids. In particular, the definitions of the structural functions and
their relationships with thermodynamic quantities, as the internal energy, the
pressure, and the isothermal compressibility, are briefly recalled together with
the exact equations that relate them to the interparticular potential. We take
advantage of the survey of these quantities to introduce what is a natural
constraint, namely, the thermodynamic consistency.

In Section III, a number of nonconsistent IETs is first introduced together
with their numerical solution procedures or, when available, with their
analytical solutions. The accuracy of each envisaged theory is also shortly
summarized. Then, the problem of the thermodynamic consistency prelimina-
rily addressed in Section II is fully developped together with the SCIETS.
Reference is made to very recent works.

Specific results of the SCIETs for fluid models, including thermodyna-
mic concepts and quantities necessary to describe phase equilibria, are



RECENT ADVANCES IN THE FIELD OF INTEGRAL EQUATION THEORIES 7

reported in Section IV. In particular, a section is devoted to recent deve-
lopments in the calculations of the excess chemical potential and related
entropic quantities.

The extension of SCIETs to the many-body interactions is presented in
Section V. Rare gases, whose constituents interact through three-body forces,
are a test case to examine the validity of the SCIETs in describing real systems.
Again, the problem of the thermodynamic consistency is covered in this section,
since recent SANS measurements provide the structure factor S(g) at very low—
g and allow us to deduce the strength of the three-body interactions. A direct
comparison of the theoretical results against sharp experiments is feasible. The
conclusions are given in Section VL.

II. CLASSICAL STATISTICAL MECHANICS
FOR LIQUID STATE

A. Pair Correlation Function and Thermodynamics Quantities

The liquid state of a material has a definite volume, but it does not have a definite
shape and takes the shape of a container, unlike that of the solid state. Unlike the gas
state, a liquid does not occupy the entire volume of the container if its volume is
larger than the volume of the liquid. At the molecular level, the arrangement of the
particles is random, unlike that of the solid state in which the molecules are regular
and periodic. The molecules in the liquid state have translational motions like those
in a gas state. There is short-range interparticular ordering or structure, however.

Briefly, we recall some basic definitions involving the short-order structural
functions typical of the liquid state and their relationships with thermodynamic
quantities. Considering a homogenous fluid of N particles, enclosed in a definite
volume V at a given temperature T (canonical ensemble), the two-particles
distribution function [7, 9, 17, 18] is defined as

1
g(N)(rl,rz):WV2/ / exp[—PBu(ri,ra, ..., ry)]drs...dry (1)

wherer|, Ia,...,rydenote the set of 3N spatial coordinates of the N particles and
u(ry, ra,...,ry) is the total potential energy. The partition function expressed as
zW) = / .. / exp[—Bu(ri,ra, ..., ry)ldr; ... dry (2)

and f = (kBT)'l is the inverse temperature. According to Eq. (1), gM(ry, 12)
measures the probability of finding the particle labeled 1 in a volume dr atry, and
the particle labeled 2 in a volume dr at r, irrespective of the positions of the
N — 2 remaining particles. The appearance of the factor V2 in Eq. (1) results of a
normalization to 1/V2, which is the probability of obtaining the same
configuration of particles in the absence of correlations. In this case, each
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particle has the probability 1/V of occupying any position in the volume V. In
this framework, it turns out that when the distance between particles 1 and 2
tends to infinity, g¥) (r1, ry) tends to 1. This expresses the loss of correlation
between particles at large distances. If the system is not only homogenous, but
also isotropic, g™ (r;, r,) depends only on the distance [ry — | = r, that is to
say that g(ry, ry) = g(r). In this case, the latter structural function is known as
the pair correlation function, which measures the probability that given a particle
at the origin, another particle of the fluid can be found at a distance r from it (see
Fig. 1). In the following, we will focus our attention on the determination of g(r)
as a solution of integral equations. We will restrict our attention first to systems of
particles that interact through central pair forces (an extension to many-body
interactions is presented in Section V) for which the total potential energy can be
written as a sum of pairwise additive terms, so that

1
u(ry,ra,...,ry) = 52“2(5‘1‘) (3)
i#j
where r; = |r; —r;| and i, j = 1,...,N. In this case, it is easy to prove that the

excess internal energy per particle is given by

eX

= 2np/g(r)u(r)r2dr (4)

3.5

3.0 + @
fes}
o

o

2.0 |
o

8

o

o
[¢)
o

o

e}

[e)

o

o

o]

o!

[e] ?

0.5

0.0 [SromsmsnsaRs

r(A)

Figure 1. Neutron-scattering experiment result for the pair correlation function g(r) of liquid
argon at T = 85K and V = 28.26 cm® mol !, near the triple point. Notice that the ripples at small r
are artifacts of the data treatment. Taken from Ref. [19].
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while the virial pressure, given by the equation of state (EOS), can be written as

B2 [ e e )

where p = N/V is the average number density of particles in the system.
Equations (4) and (5) illustrate the importance of the knowledge of the pcf in order
to achieve an estimate of fundamental thermodynamic quantities [7, 9, 17, 18].
Extending Eqgs. (1) and (2) to the grand-canonical ensemble case leads to a first
indication, but poor one, of the link between the interactions and the structure. It
can be shown easily that, in the case of a dilute gas (p — 0), one has
g(r) — e P“)_In this densities regime, the pressure can be formally written

+00
H =Y By (6)
n=1

This series is known as the virial expansion, where B, are the virial coefficients.
In principle, these last can be calculated if the potential is known. In practice,
however, the calculation is feasible only for the first few coefficients. In this
framework, Eq. (6) is only applicable to low density regimes. Obviouly, a
complete theory is expected to confidently calculate the highest possible number
of known virial coefficients. Such a calculation is one of the benchmarks of its
overall accuracy.

Since it is important to judge the accuracy of the description that will be
given to the fluid, a third important quantity, the isothermal compressibility %,
of the system, can be defined via two independent routes. On the one hand, by
making use of the thermodynamic fluctuation theory, one obtains

pkaTyy = 1 +4mp / (8(r) — 1]72dr )

This relationship is known as the compressibility equation. On the other hand,
from Eq. (5), at a given temperature T one has

1%

~ poP (8)

Xt

T
These last relations clearly establish the link between the short ordered structure
and the compressibility of the fluid.

B. Pair Correlation Function and Structure Factor

As mentioned above, when the distance separating a pair of particles tends
to infinity, the correlations vanish and g(r) tends to 1. That means that the



