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PREFACE

Biotechnology has enabled the development of lifesaving biopharmaceuticals, deci-
phering of the human genome, and production of bioproducts using environmen-
tally friendly methods based on microbial fermentations. The science on which
modern biotechnology is based began to emerge in the late 1970s, when recombi-
nant microorganisms began to be used for making high-value proteins and peptides
for biopharmaceutical applications. This effort evolved into the production of some
key lifesaving proteins and the development of monoclonal antibodies that subse-
quently have provedn to be effective molecules in the fight against cancer. In the
late 1980s and early 1990s biotechnology found further application in sequencing
of the human genome, and with it, sequencing of genomes of many organisms
important for agriculture, industrial manufacture, and medicine.

The human genome was sequenced by 2003. At about the same time the
realization developed that our dependence on petroleum and other fossil fuels was
beginning to have economic consequences that would affect every sector of our
economy as well as the global climate. Modern biotechnology began to be applied
in developing advanced enzymes for converting cellulosic materials to fermentable
sugars. The process engineering to improve grain-to-ethanol plants and the rapid
buildout of an expanded ethanol industry began. This provided the renewable liquid
fuels in small but significant quantities.

Thus biology has become an integral part of the engineering toolbox through
biotechnology that enables the production of biomolecules and bioproducts using
methods that were previously not feasible or at scales previously thought impossible.
We decided to develop this textbook that addresses modern biotechnology in engi-
neering. We started with the many excellent concepts described by our colleagues
by addressing bioprocess engineering and biochemical engineering from a funda-
mental perspective. We felt that a text was needed to address applications while at
the same time introduce engineering and agriculture students to new concepts in
biotechnology and its application for making useful products. As we developed the
textbook and the course in which this textbook has been used, the integration of
fundamental biology, molecular biology, and some aspects of genetics started to
become more common in many undergraduate curricula. This further expanded the
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utility of an application-based approach for introducing students to biotechnology.
This book presents case studies of applications of modern biotechnology in the
innovation process that has led to more efficient enzymes and better understanding
of microbial metabolism to redirect it to maximize production of useful products.
Scaling up biotechnology so that large quantities of fermentation products could be
produced in an economic manner is the bridge between the laboratory and broader
society use.

Our textbook takes the approach of giving examples or case studies of how
biotechnology is applied on a large scale, followed by discussion of fundamentals
in biology, biochemistry, and enzyme or microbial reaction engineering. Innovations
in these areas have occurred at an astounding rate since the mid-1990s. The current
text attempts to connect the innovations that have occurred in molecular biology,
microbiology, and biochemistry to the engineering fundamentals that are employed
to scale up the production of bioproducts and biofuels using microorganisms and
biochemical catalysts with enhanced properties.

The approach that we take treats microorganisms as living biocatalysts, and
examines how the principles that affect the activity of microorganisms and enzymes
are used in determining the appropriate scaleup correlations and for analyzing per-
formance of living and nonliving biocatalysts on a large scale. Our textbook will
hopefully provide the basis on which new processes might be developed, and suffi-
cient background for students who wish to transition to the field and continue to
grow with the developments of modern biotechnology industry. While we cannot
hope to teach all the fundamentals that are required to cover the broad range of
products that are derived using biotechnology, we do attempt to address the key
factors that relate engineering characteristics to the basic understanding of biotech-
nology applied on a large scale.

October 7, 2008 NATHAN MOSIER AND MICHAEL LADISCH
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