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FOREWORD

Since 1996 the Abdus Salam International Centre for Theoretical Physics
planned to devote a series of three Schools to Nonlinear Functional Analysis
and Applications to Differential Equations.

The first School was devoted to discuss the most basic tools of Nonlinear
Functional Analysis. The second School, held at the Centre from 21 April to
9 May 1997, was at a higher level, combining advanced courses with a first
introduction to research problems.

The present volume collects most of the lectures delivered on this occasion.

We would like to express our warm thanks to the speakers for their efforts
and the high level of their lectures, and to the participants for their active role.

We are also grateful to the ICTP and the European Commission for their
financial support.

,Last but not least we wish to thank Professors Bertocchi and Narasimhan
‘for having accepted our proposal and Ms. A. Bergamo and Ms. L. Zetto for
their valuable secretarial assistance.

A Ambrosetts
K.-C. Chang
[. Ekeland
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RECENT RESULTS FOR ASYMMETRIC NONLINEAR
BOUNDARY VALUE PROBLEMS

D. ARCOYA
Departamento de Andlisis Matemdtico, Universidad de Granada.
18071 - Granada, SPAIN
E-mail: darcoya@goliat.ugr.es

Dedicado a David Arcoya Tejada

We study the existence of solutions of asymmetric boundary value problems for
equations like

—Au = f(z,u) + h(z), z€Q

‘with Q being a smooth bounded domain in RV, h € L?(Q) and f € C(2 x R) is
a subcritical nonlinearity satisfying

f(z,u)

—0 < fl(—o0) = lim =2 < f(+oc) = lim flz,u)
u—=—co U u—+oo U

< 4+

Classical and recent results are reviewed.

1 Introduction

In these notes we survey some new results for semilinear elliptic boundary
value problems (b.v.p.) with an asymmetric nonlinear term. Specifically, we
study the existence of solutions for the P.D.E. equation

—Au = f(z,u) + h(z), €

under zero boundary conditions either of Dirichlet type or of Neumann type.
Here, and throughout the paper, (2 is a bounded domain in RY with sufficient
smooth boundary 89, h belongs to the Lebesgue space L?(Q) and f € C(QxR)
is a subcritical nonlinearity satisfying an asymptotic growth condition at —cc
different from the one at +oco (asymmetric nonlinearity). Indeed, we assume
that the following limits exist and are uniformin z € Q:

-0 < f/(—0) = lim f@v) < f'(+e<) = lim

u——0oQ u u—+o0 u

flz,u)

< +oco. (1)

It is well-known that the interaction of the derivative with respect to u
of the nonlinearity f with the spectrum of the Laplace operator is strongly
related to the existence of solutions of these problems. Thus, we begin by
discussing in Section 2, for Dirichlet boundary conditions, the classical results
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by Hammerstein3® and Dolph3! which prove that the absence of this interaction
implies the existence (and uniqueness) of solution. Different proofs of these
results, based on variational and fixed point techniques, are given.

Section 3 is devoted to the classical theorem by Ambrosetti and Prodi. °
These authors studied the case in which f'(—o00) < A; < f/(+00) < Az (here,
A1 and A denote, respectively, the first and second eigenvalue of the Laplace
operator with zero Dirichlet boundary conditions). This condition means that
the derivative of f jumps the first eigenvalue. Many improvements and related
results appeared afterwards for the case in which the derivative jumps a finite
number of eigenvalues of the spectrum. For this specific subject, we refer the
reader to the papers quoted in Section 3. In contrast, in the rest of the paper,
we restrict our attention to the less studied case of interaction with all but
a finite number of eigenvalues. So, to conclude this section, we consider the
case f'(—c0) < A\; < f'(+00) = +o0 and the result in Chang *® and in De
Figueiredo and Solimini®° (see also Brézis and Nirenberg!7) is given.

In the following sections the case A\ < f'(—o0) < f'(+00) = +0o0 is treated
either with Dirichlet boundary conditions (Section 4) or with Neumann bound-
ary conditions (Section 5). This kind of asymmetric nonlinearities has been
recently considered in Arcoya and Villegas, 1! Capietto and Dambrosio, 3
Dancer, ?2 De Figueiredo, 2> De Figueiredo and Ruf, 2%:2° Perera, 47 Pérez
Sanchez, 48 Ruf and Srikanth 57 and Villegas. 5° Following the ideas of Arcaya -
and Villegas, 1! we use the Bifurcation Theory to study the Dirichlet problem
in Section 4. However, for the Neumann problem in Section 5, variational
techniques are applied as in Arcoya and Villegas!© and Villegas. *°—

Notation. In the sequel we make use of the following notation:

Q is a bounded domain in RY with sufficiently smooth boundary 8.

|A| denotes the Lebesgue measure of a measurable set A ¢ RY;

LP(Q), 1 < p < +oo denote Lebesgue spaces; the norm in L?(Q) will be
denoted by ||.||p;

H'(Q) denotes the usual Sobolev space endowed with the norm ||u||? =
Jo |Vul?dz + [, u?dz; H=1(Q) is the dual space of H'(Q).

H}(Q) denotes the subspace of the functions in H'(Q2) which are zero (in
the sense of the traces) in the boundary 9Q of Q endowed with the norm
lull®> = fq |Vu|? dz;

— denotes weak convergence; — denotes strong convergence;

st = max{s,0}, s~ = min{s, 0};

K,K;,K>,...,C,C1,Cy, ... denote (possibly different) positive constants;

A1 < A2 £ ... £ Aj < ... denote the eigenvalues of the Laplacian operator
either with zero Dirichlet boundary conditions or zero Neumann boundary
conditions. ¢; denotes the associated eigenfunction to A;.



2 No interaction with the spectrum

We consider in this section the Dirichlet b.v.p.

uw=0, T €90 (2)

where h € L*(Q) and f € C(Q x IR) satisfies (1). Our goal consists in re-
minding the main existence results for the case in which the derivative of the
nonlinearity does not interact with the spectrum of the Laplacian operator.
In this way, our first result is the classical result of Hammerstein %6 (see also
Iglisch 37) about nonlinearities with derivative less than A;.
Theorem 1 (HAMMERSTEIN, 1930) a) Suppose that f'(—o0), f/(+00) < A1,
then there erists at least one solution of (2) for every h € L%(Q).

b) If, in addition, we assume that f is of class C' and |f'(z,t)] < m < A\,
for every z € Q, t € IR then this solution is unique.
Proof. The proof is based on variational methods. Let J be the functional
defined in the Sobolev space Hj(Q) by setting

ZE/ |vu|2dx—/QF(a:,u)dx—/Qhuda:, (3)

where F(z,t) fo z,5)ds. As it is known, J is of class C! and its critical
points are just the (weak) solutions of (2) (see, for instance Ambrosetti,3 De
Figueiredo, ?® Rabinowitz 33).

a) Since fA—c0), f'(+00) < Ay, there exists m < Ay such that |f(z,t)] <
m|t| + C and thus |F(z,t)| < mt?/2 + Clt| for all z € Q and t € IR. Hence we
deduce

—Au = f(z,u) + h(z), €N }

I 2 3 (1= ) Il = Cllul

This inequality implies that J is coercive. In addition, it is w.l.s.c. and there-
fore it attains its infimum at some u € H}(Q) which necessarily is a critical
point-of J and so a solution of (2).

b) It suffices to observe that, in this case, G(z,t) = A\it?/2 — F(z,t) is
convex in the variable ¢t which allows us to conclude that

1
J(u) = 3/ (IVul? — Au?) dm—/ G(z,u)dz —/ hu dz,
“JQ Q Q
is a convex functional (as the sum of three convex functionals). O

The next result is due to Dolph.3! The case in which f/(—o00) and f'(+o0)

are between two consecutive eigenvalues of the Laplacian operator is consid-
ered.



Theorem 2 (DOLPH, 1949) a) If Ay, < f/(—o0), f'(+00) < Any1 for some
n € IN, then there exists at least one solution of (2) for all h € L*(Q).

b) If, in addition, we assume that f is of class C' and there ezists € > 0

such that A\p, + £ < f'(z,t) < Apy1 —€ for everyz € Q and t € IR, then this
solution ts unique.

Proof. Let v = ﬁ‘% and notice that (2) may be written as
u=K[N(u)], ue L*Q),

where K, N : L*(Q) — L?(2) are defined by

: : . . —Ay —yu=
Ku = v is the unique solution v of v-r=u, €0 }

v=0, €N
and
Nu(z) = f(z,u(z)) + h(z) — yu(z), Vz € Q.

Hence, we have to prove the existence of a fixed point of T = K o N. This
may be done by the Schauder fixed point theorem in case a) and by the Banach
fixed point theorem in case b). We begin by the simpler case, i.e. case b):

b) Note that . - ,
ITe-Tol, = IKIN@) - NI,
< IKIIN - Nl -
= ) =l - () = el
< e | e - e

and thus T is a contraction which implies that (2) has a unique solution for
all h € L%(Q). B

a) With respect to the proof of a), as mentioned above, it suffices to apply
the Schauder theorem. In order to do this, observe that from the hypotheses
on f, there exists a sublinear function g in Q x IR such that we can write

f(z,t) = f/(+oo)t™ + f/(—o0)t™ + g(z,t), Vt€ R

with t* = max{¢,0} and ¢~ = min{t,0}. Hence, there exists & € (0, (Ant1 —
An)/2) such that

|f(z,s) —vs| <m@ls|, Vs R



and thus

[Tullz < I[N ()2

2
< e (1) = vl + Al
n+l —
2
< oo (Ellullz + [|Al2]
< pllullz + G,

with 0 < ¢ < 1. So choosing 7 > 0 such that ur + C < r, we deduce that
ITull2 < rY|ulls <7, ie. T(B(0,r)) C B(0,r). Finally, the compactness of
K and the continuity of the Nemistky operator N implies the compactness of
T and so we can use the Schauder theorem to conclude the proof of a). a

A variational proof of a). We can apply the Rabinowitz 3 saddle point
Theorem to obtain a different proof of part a) of the theorem above. Indeed,
we consider again the C!—functional J given by (3). Taking

s An < p < f/(=00), f/(+00) < T < Any1,
it is easy to verify that
1 9, 1_ o
E,ut —C’lfF(z:,t)gg,ut“-’rC'g, vVte R,V €

and thus

S~ 3= Caloi~allallulls < J(w) < 1wl - EulB+CulQ +Ila )

Splitting H3(Q) into HE(Q) = Vo VL with V = (p1,02,...,0n), we
deduce from the variational characterization of the eigenvalues A; that

s <3 (1- %) i+ e+ By, vue v
and
Szt (1 - i) ol - sl = B2, v
2 /\n+

So, it is possible to choose R > 0 such that

max J(u) < inf J(u).
ueV, ||u|]|=R ueVv+



On the other hand, J satisfies the Palais-Smale condition, i.e. if {u,} C
H}(Q) is such that {J(un)} is bounded and {J'(un)} tends to zero in the dual
space of HE(QY) then {u,} has a convergent subsequence. Indeed, it suffices
to prove that all sequences satisfying the above hypotheses are bounded in
H}(Q). Assume, by contradiction, that ||un| — +oo and observe that using
lim, 100 J'(un)(¢)/||unll = 0 and taking v, = u,/||un||, we obtain

@ h

lim V’bn Vodz — fa:u )cpd:z:—/ i dzr =0,
n—+oo llunll o llunll

for every ¢ € HO(Q). Passing to a subsequence, if necessary, we may as-

sume without loss of generality that {v,} — v in H}(Q), {va} — v in L*(Q),

{va(z)} — v(z) a.e. z € Q. Thus, by the Lebesgue dominated convergence
theorem we yield

fxtm
it llunl

:/Q(f'(-i—oo)v*' + f'(—oo)v”) pdx

and hence

/VU-V'de =/ (f/(+oo)v++f'(—oo)v")<pd:1:,_.
Q .

Q

l.e. v is a solution of the problem

(4)

with @ = f'(+o0) and £ = f’(—o0). This implies that v = 0 and this is a
contradiction because we deduce that

-Av=avt +p6v™, z€Q
_ v=0, z €N

0= lim J'(un)(vn) =1- lim /f(:r,un)vndz:—/hvndz=1.
Q Q

n—+00 n—+0o00

Therefore, {u,} is bounded and the Palais-Smale condition has been verified.

All hypotheses of the Rabinowitz theorem are satisfied which proves part a) of
the Theorem. m

Remark 3 : Fucik spectrum. In the above variational proof or, more specif-
ically, in the verification of the Palais-Smale condition, it is essential the fact
that problem (4) has zero as a unique solution if & and £ lie between two con-
secutive eigenvalues. The set ¥ of the pairs (a, 3) such that (4) has nontrivial
solutions is called the Fugik spectrum. It was Fuéik 3 who gave a complete
description of it in the case N = 1. The description in the case N > 2 is still



an open problem. Some interesting results have been given in Arias and Cam-
pos, 1213 Dancer, 2* De Figueiredo and Gossez, 2” De Figueiredo and Ruf 29
and Gallouet and Kavian. 3* Indeed, in Dancer, 2* it is shown that the two
lines {A\1} X R and IR x {A\;} are isolated in . In Gallouet and Kavian3? it is
proved that from each (Mg, A\x) emanates a curve in £. A variational charac-
terization of the curve S; emanating from (g, A2) is deduced in De Figueiredo
and Gossez. 27 In addition, in this paper the authors proved that S; is asymp-
totic to the lines {A;} x IR and IR x {A\1}. This is in contrast with the case of
Neumann boundary conditions which is also studied in the quoted paper. In
fact, for the Neumann b.v.p. the asymptotic behavior of the curve emanating
from (A, Az) is different if N > 2 (asymptotic to the lines {0} xR and IR x {0})
that is if N = 1 (asymptotic to {r?/4} x R and R x {n2?/4} if @ = (0,1)). In
Arias and Campos 2 the description of the radial spectrum is given.

3 Ambrosetti-Prodi problem and related results

The previous results have a common feature: the derivative of the nonlinearity
does not interact with the spectrum of the Laplacian operator. However, there
- aré a lot of cases where this interaction appears. For instance, we can consider
the study of the existence of positive solutions for the b.v.p.
—Au = f(z,u), z€Q } (5)

u=0, z€0Q

where f € C(Q x R, IR) satisfies f(x,0) > 0, for every z € Q. As it is well-
known (see Ambrosetti and Hess*), one way to study this problem consists in —
extending the nonlinearity to Q x IR by taking f(z,u) = f(z,0) for z € Q,
u < 0. Indeed, in this way, by the maximum principle, the solutions of the
extended problem are just the positive solutions of our problem. Observe that
we then have f'(—o0) = limy—_oo f(z,u)/u = 0. Therefore, in all cases in
which f’(+00) > A1, we have an asymmetric problem with interaction of the
derivative of the (extended) nonlinearity with the spectrum. —

In the paper by A. Ambrosetti and G. Prodi®, the case in which the-deriva-
tive of the nonlinearity jumps the first eigenvalue of the Laplacian operator was
studied for the first time. Specifically, they proved

Theorem 4 (AMBROSETTI AND PRODI, 1973) Let Q@ C RN be a bounded
domain with boundary 8Q of class C** (0 < @ < 1) and f € C*(IR) satisfying

i) F(0)=0,

i) f"(t) >0 for everyt € R,



iil) limy__oo f'(t) = f'(—00) € (0, A1),
iv) limp o0 f/(t) = f'(+00) € (A1, A2).

Then there exists in C’O'_"‘(ﬁ) a closed connected C*—manifold M of codimen-
sion 1, such that C®%(Q) — M consists ezactly of two connected components
Ay, Ay with the following properties:

a) If h € A, then problem (2) has no solution in cg’“(ﬁ).

b) If h € Ay then problem (2) has ezactly two solutions in Ca*(%Q).

c) If h € M then problem (2) possesses a unique solution in Cg‘a(Q). 0

The proof of this theorem is based on theorems of global inversion of
mappings with singularities. This can be seen in the original paper or also in
the book of Ambrosetti and Prodi. ® We remark explicitly that the previous
result gives us the exact number of solutions of the b.v.p. (2). Since this paper,
the problem of studying the existence of solutions, or more specifically, the
lower bounds of the number of solutions, of b.v.p. with nonlinearities jumping
the first eigenvalue is called as Ambrosetti-Prodi problem. The literature is
very vaste. Among many others, we cite Amann and Hess, > Berestycki, !°
Berger and Podolak, 16 Chang, 1° Dancer, 2* De Figueiredo and Solimini, 3°
Fucik,3® Gallouet and Kavian,3* Kazdan and Warner,*® Podolak *® and Ruf®®
for the case of a nonlinearity with f'(—o0) < A\; < f'(+00).

The more general case in which the nonlinearity interacts with a finite
number of eigenvalues (without necessarily including A;) has been extensively
studied by Arias and Campos, !4 Costa,?? Costa,De Figueiredo and Srikanth, 2!
Domingos and Ramos,3? Lazer and McKenna, 24344 Micheletti and Pistoia, 43
Orsina, 46 Ramos °* and Ruf and Solimini. °¢ In order to have a reasonable
length for these notes we do not include here the results in this field. We only
refer the reader to the quoted papers and the references therein.

In the following, we study cases in which the interaction is with infinitely
many eigenvalues. We begin by studying the case f'(—o0) < A; < f/(+0) =
+00. Observe that the meaning of this condition is that the derivative crosses
all the spectrum. Actually we can state (see De Figueiredo 2¢) the existence of
at least one or two solutions without assuming f'(+o0) = +co. However, by
definiteness we impose that this equality holds.

Theorem 5 Let h € C*(Q) (0 < a < 1) be a function such that [, hoydz =
0. Assume that —co < f'(—o0) < A1 and



i) If N > 2, there exist o € (1,2*) and K, K2 > 0 constants such that

|f(z,s)| < K1+ Ks|s|°, Y2€Q, Vse€R

(where 2% = %i’—g for N >3, and 2* = +co for N = 2).
ii) There ezist so >0 and § € (0, 3) such that
0 < F(z,s) < 0sf(z,s), YT €Q, Vs> 59

where F(z,s) = [; f(z,t)dt is a primitive of f.

Then there exists tg € IR such that the problem

—Au = f(z,u) +te1 + h(z), €0
u=0, z €N

has

2) mo solution if t > to,
b) at least one solution if t = tg, and

c) at least two solutions if t < tg.

Remark 6 Hypothesis ii) is a condition of "superlinearity” on f which may
be found in Ambrosetti and Rabinowitz. 7 It may be seen (for instance, in De
Figueiredo ?6) that this implies the existence of K > 0 such that

f(a:,s)ZKs%_l, Vs >59 (6)
and so f'(4+o00) = +cc
Sketch of the proof. We follow closely the idea in Chang!® and in De Figueiredo
and Solimini. 3 Take f'(—cc) < p < A;. Using that f(z,s) > us — C for every
z € Q and s € IR, we deduce that, since x < A;, the unique solution y; of the
problem

—Au=pu—C+tp; +h(z), €
u=0, z € 0N }

is a lower solution of (P;). In addition by the maximum principle it is easy
to prove that any upper solution is greater than x;. Therefore, to prove the
existence of, at least, one solution it suffices to show the existence of an upper
solution. Now, by the arguments in Kannan and Ortega3® and in Kazdan and
Warner, 4° we can prove that for ¢ << 0 there exists an upper solution. Hence,
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the set I" of t € IR for which there exists an upper solution is not empty. Using
that every upper solution of (Ps) is an strict upper solution of (P;) for all
t < s, it is easy to show that I" is a closed interval unbounded from below and
bounded from above. Take t; = maxI'. Parts a) and b) of the theorem are
proved. For t < tg, we have a pair of ordered strict lower and upper solutions,
(x¢,u) with u an upper solution of (P,). This implies by the arguments in
Brézis and Nirenberg!7 that there exists a solution u, which corresponds to a
local minimum of the functional J defined in H{ () by setting

J(u):%/ |Vu|2d:c—/F(z,u)dl‘—t/cpludz:—/hudx, u € Hy(Q).
< Ja Q Q Q

In addition, since f'(+o00) = +o0 (it suffices that f'(+o0) > A1), we have
lim;_.+ o J(s91) = —o0 and consequently there are 7 > 0 and e € H}(2) such
that J(e) < J(u;) (with u; a local minimum of J). Therefore the geometrical
hypotheses of the Mountain Pass Theorem of Ambrosetti and Rabinowitz” are
satisfied. To conclude the proof of part ¢) we just have to show that J satisfies
the Palais-Smale condition. But, observing that from the hypotheses on f the
following inequality is deduced.

1 «
EF(x,s) < sf(x,s) + CAis?, VT e Q, V|s| > R

with C € (0, % —6) and R >> 0, and by using the classical ideas of Ambrosetti
and Rabinowitz” to prove the Palais-Smale condition for superquadratic func-
tionals as J, it is then easily verified this compactness condition for J (see
Lemma 3.2 in Arcoya and Boccardo® for the details). s

Remark 7 At the beginning of this section, we pointed out that the study
of the existence of positive solutions for b.v.p.’s with a superlinear (at +o0)
nonlinearity can be seen as an asymmetric problem. In addition to embed this
kind of problem into the more general framework of the asymmetric b.v.p., this
point of view allows also to revise their existence results as particular cases.
In this way, using the previous theorem we can easily deduce the classical
Ambrosetti and Rabinowitz ” Theorem for the existence of positive solutions
of (5), i.e. that if we assume i), ii) and that lim,_,o+ f(z,s)/s = 0 (uniformly
in z € Q then there exists a positive solution of (5). Indeed, taking h = 0 in
Theorem 5 and since u = 0 is a trivial solution of the problem, we get that, in

this case, 0 € ' and so tp > 0 which implies the assertion by c) of the quoted
theorem. '
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4 Interaction with all but a finite number of eigenvalues

This section is devoted to study the existence of solutions of Dirichlet problems
like

(7)

-Au = f(z,u), €N
v = 0, €N

where f : @ x R — IR is a locally Lipschitz function satisfying f/(—oc) =
A € R and f/(+c0) = +co. Previous results have been given in Dancer, 2?2 De
Figueiredo, ?® Ruf and Srikanth 57 (see also Section 6 in Dancer ?*). In these
papers, the authors study the case of nonlinearities f which are superlinear at
+o00 and, on the other hand, at —oo satisfy

(f1) There exists A € IR such that

) lim flz,s) = )\, uniformly in z € Q.
§——0Q S

The results in Dancer?? and Ruf and Srikanth3” are for Dirichlet problems like
" (7) with N =-1. The case of a general domain @ ¢ R" (V > 1) is considered in
De Figueiredo 2> where the author assumes a very technical set of assumptions
for the nonlinearity. More recently, Capietto and Dambrosio !® studied the
case N =1 by using a continuation theorem and a time-map technique based
on a generalized Fucik spectrum.

Here, our idea is to apply a bifurcation theory on the parameter A and, for
a suitable truncated problem of (7), to prove that condition (f;) implies the
existence of a branch of solutions bifurcating from infinity at A;. The behavior
of this branch may be studied if, in addition, we assume that f(z,0) > 0
for every z € Q and (7) admits a positive supersolution. In this case, it is
standard to deduce by iterative methods the existence of a positive solution of
(7). (Observe that the asymmetric hypotheses on f are not essential in order to
find this solution.) However, we show that the branch does not contain positive
solutions. This allows to obtain sufficient conditions in the case A > A for the
existence solutions which are negative in some subset of Q.

For this purpose, assume that f(z,s) is a locally Lipschitz function in
Q x IR satisfying (f1) and that up € C%(Q) is a supersolution of (7). Let
M = max_.g uo(z) and consider the truncation fo(z,s) of f(z,s) given by

flz,s), ifs<M, zeQ
fO(Ias) = .
flz, M), ifs>M, ze€.



