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Preface

This monograph contains material from several research papers and lectures
I gave in Bonn, Leipzig, New York, and Fribourg on various occasions, all of
them about different aspects of the same problem. In an attempt to make
the work nearly self-contained, I also included many additional paragraphs
and most of the proofs of the auxiliary results. It is assumed, however, that
the reader is familiar with the basic theory of linear elliptic and parabolic
partial differential equations, and with the elementary notions of Rieman-
nian geometry.

The aim of the book is to explain the methods that have been developed
in the last decades to prove partial regularity for harmonic maps, and also
to show how these methods can be extended to related problems. This
includes perturbations of the harmonic map problem as well as associated
parabolic problems. Both types may be of interest in applications from
physics or possibly other sciences.

Roger Moser
New York
November 200/
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Chapter 1

Introduction

Variational principles play an important role in both geometry and physics,
and one of the key problems with applications in both fields is the varia-
tional problem associated to the Dirichlet energy of maps between Rieman-
nian manifolds. The critical points of this functional are called harmonic
maps.

Harmonic maps have successfully been used in many instances in order
to understand the geometry of the involved manifolds. The Dirichlet energy
also appears in the context of various theories from physics; for instance, in
connection with liquid crystals, ferromagnetic materials, or superconduc-
tors. Another motivation to study harmonic maps is the fact that many
principles that hold for the Dirichlet energy and their critical points, the
harmonic maps, have counterparts in other theories. Methods that have
been developed for harmonic maps can sometimes also be applied to other
problems, and vice versa. For example, the problems of minimal surfaces
or Yang-Mills fields show a similar behavior as the harmonic map problem
in certain aspects.

The Dirichlet energy is one of the simplest possible functionals involv-
ing first derivatives. In the theory of harmonic maps, however, it is studied
on a non-linear space, which gives rise to non-linear Euler-Lagrange equa-
tions for its critical points. These non-linearities make it a challenge to
study the solutions. Whereas it is not difficult to construct weak solu-
tions in general—for instance by the direct method from the calculus of
variations—, in order to see how regular the weak solutions are, one needs
quite subtle arguments. The methods that are used here take advantage of
the special structure of the equations, and involve some rather deep results
from harmonic analysis. It is the aim of this monograph to explain these
arguments and to show how they can be used to prove regularity, or par-
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tial regularity (for the solutions are not regular everywhere in general) of
solutions of related problems, including perturbations and generalizations
of the harmonic map problem as well as parabolic problems associated to
the Dirichlet energy.

1.1 Harmonic Maps

Suppose M and N are smooth Riemannian manifolds of dimensions m and
k, respectively. We assume throughout the book that N is compact and
has no boundary. The manifold M, in contrast, may be non-compact and
may have a boundary. We consider maps v : M — N, therefore we call
M the domain and N the target manifold. We now give a definition of the
Dirichlet energy of a sufficiently smooth map u : M — N (for instance,
u € C1(M;N)). Because regularity is a local problem, and because the
geometry of M is not so important for the arguments, we will assume later
that M is an open subset of the Euclidean space R™ (and we will then
write (2 instead of M). For completeness, however, we at least write down
the problem for a general manifold M here.

A map u : M — N induces a metric on the vector bundle T*M ®
u™ITN over M (with fiber Ty M ® Ty(;)N at the point z € M). We write
(s )7+ Meu-17n for this metric. If u is continuously differentiable on M,
then the first derivative du is a continuous section of this vector bundle.
Hence the function

1 1
e(u) = §|du 2T'M®u-1TN = 5 (du7du)T'M®u—1TN

is well-defined. We set
B = [ e(w)du, (L1)
M

where p s is the measure induced by the Riemannian metric on M, provided
that the integral converges. This number is called the Dirichlet energy of
the mapping u.

Next we give this expression in local coordinates. Suppose we work in
a coordinate chart M’ of M, and the metric is given there by the matrix
v = (YaB)1<a,8<m in local coordinates. Suppose further that the image of
M’ under u is contained in a coordinate chart of N. The metric of N is
given by g = (gij)1<i,j<k in the corresponding local coordinates. We write
(v*#) = 471, thus the metric of T*M is given by this matrix. Then we
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have

k : 5
1 «— o Ou* ou’

— = B sy e e
2 a;l ijz=l T Oz Oz

and the Dirichlet integral is given locally by the integral

But Ol
E(w; M) = Z Z/ e g,,a” auﬂ\/|det'y|d:c.

o,f=14,j=1

When we compute the Euler-Lagrange equations for critical points of
this functional, we find

= 8%’ ou’ . Ou? oul
aﬁ 5 — 0
a%;l’y 8z>0zh JZ_: B 58 + Z Jl oz 9P
fori =1,...,k. HereI? op are the Christoffel symbols in M’, and C’l the
Christoffel symbols for the local coordinates on N. If D denotes the Levi-
Civita connection on T*M ® v~ 'TN, a coordinate free representation of
these equations is

trace(Ddu) =

The point of view we have taken so far is not optimal when we consider
the variational problem associated to the Dirichlet energy and weak solu-
tions of the equations. Normally, it is natural to study such a functional
in a Sobolev space; in this particular case, a space of maps with square in-
tegrable first derivatives would be an obvious choice. Unfortunately, maps
in such a Sobolev space are not continuous in general, and the assumption
that the image of M’ under u is in a coordinate chart of N is not justified,
even if M’ is very small. In other words, we cannot carry out the same
calculations as above for maps in a Sobolev space.

The easiest way to overcome this difficulty is to assume that IV is isomet-
rically embedded in a Euclidean space R™. This appears to be a restriction
at a first glance, but in fact such an isometric embedding always exists, ow-
ing to the so-called Nash-Moser embedding theorem which was proved by
J. Nash [1954; 1956] (and the methods were improved by J. Moser [1961]).
We regard N as a submanifold of R™ in the rest of this book. We can then
consider the Sobolev space

HY(M;N) = {ue H'(M;R") : u(z) € N for almost every z € M},
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where H'(M;R") is the Sobolev space of all weakly differentiable maps
u: M — R™ with

1
B(w) =3 /M (a2 pggmn diing < 0. (1.2)

If u is in the space H!(M; N), then du(z) is in Ty M ® Ty N at almost
every point z € M. Hence the number F(u) defined by (1.2) coincides with
the Dirichlet energy given by (1.1) whenever the latter is well-defined.

The new representation of the energy functional gives rise to a new
version of the Euler-Lagrange equations. Suppose the second fundamental
form of the submanifold N is denoted by A. Then it can be shown that
critical points of E satisfy

M LA 8 Ou Ou\ _
A u+a%;1'y A(uw) (ag,gx—ﬁ) =0 on M,

where AM = divM (VMu) is the Laplace-Beltrami operator on M (and VM
denotes the gradient on M).

We assume henceforth that Q is an open domain in R™, and we replace
M by Q. This simplification will spare us some technical work while pre-
serving all the important ideas behind the arguments that are presented in
the subsequent chapters. We then also use a simplified notation. The gra-
dient on € is denoted by V, the Laplacian by A. We consider the Dirichlet

energy
= l/ |Vu|? dz,
2 Ja

where | - | denotes the Euclidean norm in R™*" = R™ @ R™. The Euler-
Lagrange equation for critical points of E becomes

Au+ A(u)(Vu,Vu) =0 in Q, (1.3)

where we use the abbreviation

A(u)(Vu,Vu) = Z (6_6;%’%) .

We will show in Section 3.2 how this equation is derived. (For a general
domain manifold M, the computations are essentially the same.) It will
also be shown that (1.3) is equivalent to

Au(x) A Tu(z) N
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for almost every x € €.

A map u € H'(Q; N) which satisfies (1.3) in the weak sense is called a
weakly harmonic map. The regularity of weakly harmonic maps is the first
problem we study in this book. It turns out that weakly harmonic maps
may have singularities in general. For instance, the map

mapping R™\{0} onto the unit sphere
§S™1={zeR™: |z| =1},
satisfies the equation
Au + |Vul?u =0 in R™\{0}. (1.4)

This, however, is (1.3) in the case N = S™~! (as will be shown in Section
3.5). If m > 3, the map u satisfies (1.3) in the weak sense in R™. If
it is restricted to a bounded domain Q@ C R™, it has finite energy and is
thus a weakly harmonic map. But obviously u has a singularity at 0. The
situation is even worse: There exists an example, constructed by T. Riviere
[1995], of a weakly harmonic map that is discontinuous everywhere in its
domain.

Fortunately, this is not the end of the story. On the one hand, the
dimension of the domain plays a role here. For m = 1, we have an ordinary
differential equation (and its solutions are geodesics). Regularity is not
an issue here, and we don’t even consider this case any more henceforth.
The case of two-dimensional domains is special, too. We will see that for
m = 2, every weakly harmonic map is smooth. The example of T. Riviere
is in three dimensions, and from it, non-regular harmonic maps in higher
dimensions can also be constructed. But despite these discouraging counter-
examples, all is not lost even if m > 3. When we go back to the variational
problem for the Dirichlet energy E, we find that it is natural to impose
an additional condition, and then certain partial regularity results can be
proved. Equation (1.3) is equivalent to the condition

d

2| Blrwo(u+se) =0

s=0
for any smooth map ¢ : @ — R™ with compact support, where 7y is the

so-called nearest point projection onto N, i. e., the unique map that assigns
to every point y in a neighborhood of N the point on N that minimizes the
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distance to y. The family of maps mn o (u + s¢) is a natural variation of u
in H'(Q; N), but this is not the only kind of variation we can consider. If
we have a smooth map 1 : @ — R™ with compact support, then the family
given by us(z) = u(x + sy(z)) gives another variation of u. A weakly
harmonic map u € H'(Q; N) is called stationary if

d

ds|,_o

E(us) =0 (1.5)

for all such variations. A smooth harmonic map is automatically stationary,
but a weakly harmonic map not necessarily.

Stationary weakly harmonic maps can still have singularities. In fact
the maps u(z) = z/|z| discussed above are stationary for each m > 3. But
in contrast to weakly harmonic maps in general, the singular set, i. e., the
minimal relatively closed set in € such that u is smooth on the complement,
is always small if the maps are stationary. For u(z) = z/|z|, the singular
set consists of one single point. In general one can prove that a stationary
weakly harmonic map is smooth away from a singular set of vanishing
(m — 2)-dimensional Hausdorff measure.

What makes stationary weakly harmonic maps special? When we want
to prove regularity, the crucial observation is that the decay of the Dirichlet
energy, restricted to concentric balls of shrinking radii, is described by a
very convenient formula if we have a stationary weakly harmonic map.
As a consequence, we have a good estimate for the mean oscillation (see
the definition in Section 2.3) of the map. The problem of proving partial
regularity of the kind as described above is then reduced to showing that
a weakly harmonic map of small mean oscillation is always smooth. To do
that, one can work with equation (1.3) again.

We now try to give a glimpse of how (1.3) can be exploited, with argu-
ments based on ideas of F. Hélein [1990; 1991a; 1991b], in order to prove
regularity. These arguments and the ones mentioned previously are given
in detail in Chapter 3; here we just try to give an intuitive idea of how the
structure of the equation comes into play. We consider again the special
case where N is a sphere S”~! C R™. Then equation (1.3) can be written in
the form (1.4), but there exists yet another equivalent system of equations:
A map u = (ul,...,u") € H}(Q;S"1) satisfies (1.4) if and only if

div(u'Vu? —uIVu') =0 in Q (1.6)

for all 4,5 =1,...,n. Using the exterior product A : R® x R® — A,R", we



Introduction 7

can also write
diviuAVu)=0 inQ

for (1.6). If we already know that u is regular, the equivalence of (1.4) and
(1.6) can be checked directly, using the properties of the exterior product. It
is shown in Section 3.5 that they are equivalent whenever u € H!(Q;S"1).
We have

n

|Vul? = |uA Vul? = Z 'V - (u'Vu! — v Vaub),

3,j=1
because u L aaz’ﬁ, almost everywhere for every @« = 1,...,m. Thus the
energy density
1
e(u) = §|Vu|2

can be written in a very special form: the sum of products of

e a gradient,
e a divergence free vector field, and
e a function with a mean oscillation for which one has good estimates.

Then we need a few sophisticated tool from harmonic analysis. We will dis-
cuss them in the next section, along with some other analytic preliminaries.
Here we just describe them briefly: A compensated compactness principle
due to R. Coifman, P. L. Lions, Y. Meyer, and S. Semmes [1993] gives an
estimate of the product of a gradient and a divergence free vector field in a
Hardy space, in terms of the L2-norms of the factors. This Hardy space is
the dual to the space of functions of bounded mean oscillation, according to
a result by C. Fefferman and E. M. Stein [1972]. In particular the product
above has an estimate that allows to draw the following conclusion: If the
energy of u is sufficiently small in a given ball, then the decay of the energy
in concentric balls of shrinking radii is even better than the decay that con-
dition (1.5) implies. In fact it is good enough to apply a well-known decay
lemma of C. B. Morrey and conclude that u is Hélder continuous at least
near the center of the ball. Continuity is the first step on the way to prove
regularity, and it turns out that it is the most difficult. Once we know wu is
continuous, higher regularity is proved relatively easily.

For other target manifolds, this method does no longer work in the same
way, because there is no representation of the harmonic map equation like
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(1.6) in general. But with the help of additional arguments, due essentially
to F. Hélein [1991a], similar arguments can still be applied.

1.2 Related Elliptic Equations

In applications, the harmonic map equation is often encountered not in
its “pure” form, but with additional terms. For instance, the functional
we study may be the Dirichlet energy plus some other, lower order terms.
We consider briefly one such example as a motivation for the problems
discussed in Chapter 4, namely an energy functional from the theory of
micromagnetics. Many other functionals from physics or geometry could
be considered instead, but we use this one because it is also relevant for
another problem we will study later.

We assume m = 3. The bounded domain 2 represents the shape of a
ferromagnetic sample and u : © — R3 its magnetization vector field. At
low temperatures, one can assume that the magnitude of u is constant; for
an appropriate choice of units this means |u| = 1 almost everywhere. That
is, we have the target manifold N = S2. The energy assigned to u consists
of several components:

e The highest order contribution is the Dirichlet energy, multiplied
by a material constant d?. That is, we have the term

2
(—i—/ |Vu|? dz.
2 Ja

In this context, this is also called the exchange energy. The con-
stant d is called the exchange length. The exchange energy pe-
nalizes spatial variations of the magnetization vector field, which
reflects the fact that neighboring magnetization vectors have a ten-
dency for parallel alignment.

e Crystalline anisotropies in the material can be modeled by a term
of the form

/Q ®(u) dx

for a function ® : S2 — R. We assume ® is smooth.
e The magnetization induces a magnetic stray field A : R® — R3
which has a certain energy. According to the static Maxwell equa-
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tions, the stray field satisfies

curlh =0 in R3,
div(u+h) =0 in R?

where u is extended by 0 outside of Q. The first equation implies
that —h can be written as the gradient of a function U. By the
second equation, this U is a solution of

AU =divu in R?

in the distribution sense. There exists exactly one solution such
that the integral

l/ |VU|2d.'l‘=}-/U,~VUdI
2 R3 2 (9]

is finite, and for this choice of U this integral gives the third contri-
bution to the micromagnetic energy. It is called the magnetostatic
energy.

e If there is an external field H : R® — R3, we also have the energy

—/u-de.
Q

The full micromagnetic energy is the sum of all four terms, that is, the
functional

2
F(u)=/ (%|Vulz+é(u)+%u-VU—u-H) de.
Q

A discussion of the physical background of this energy can be found, e. g.,
in the books by A. Aharoni [2001] or by A. Hubert and R. Schifer [1998].
Critical points of the functional F' satisfy

d?(Au + |Vu|?u) — grad ®(u) + (H —VU)T =0 in Q,

where grad denotes the gradient on S? and (-)T denotes the orthogonal
projection X = X — (u, X)u onto the tangent space of S? at the image
point of u. The first two terms are (up to the factor d?) the same as
in (1.4). They are the highest order contribution, hence they should be
the most important terms when we study the regularity of solutions. It
turns out that this is true. But when we try to prove regularity with
the methods for harmonic maps, we have to handle quite subtle tools and
difficult arguments, so that the additional terms may pose some problems,
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even if they are of lower order. Especially the term involving VU could
cause some difficulties, because its non-local nature makes it difficult to
say much about it in advance. Thus if we want to study the question of
regularity for problems like this one, we need to find out how the methods
can be adapted when we have variants of the harmonic maps equation.

In Chapter 4, we study solutions of the equation

Au+ A(u)(Vu,Vu)=f inQ (1.7)

for a function f : & — R™ in a certain LP-space. In the example of the
functional F, it is not difficult to show that the lower order terms of the
equation are in appropriate LP-spaces under reasonable assumptions, and
the same is true for many other problems that can be encountered in ap-
plications.

It is sometimes relatively easy to generalize the methods of the theory
of harmonic maps to such a situation, and sometimes very hard, depending
mainly on the number p (in relation to the dimension m). We consider in
particular three cases. First we study the case p > 7 (and for technical
reasons we always assume p > 2). Here we can prove Holder continuity of
solutions of (1.7) under the conditions that generalize the notion of station-
ary weakly harmonic maps naturally. In the border case p = %, continuity
cannot be expected any longer; already the theory of linear equations shows
that. It is still possible, however, to prove certain energy inequalities that
can be useful for certain problems. Finally we study solutions of (1.7) for
p = 2 in dimensions m < 4. If p = 2, the dimension four plays a similar role
for the problem belonging to (1.7) as the dimension two plays for weakly
harmonic maps. In particular, the problem is relatively easy—although
obviously still more difficult than the corresponding problem for harmonic
maps—if m < 4 (and hence p > %); it is moderately difficult if m = 4, and
very difficult indeed if m > 4. We do not consider the last of these cases.
In the other two cases, however, we can find some estimates for the second
derivatives of solutions of (1.7).

There are many possible ways to generalize the arguments further. For
instance, some of the methods we use in Chapter 4 also work for solutions
of equations like

Au+ A(u)(Vu,Vu) = f+divg in Q,

where g : @ — R™*" is in an appropriate L?-space (and such equations
may also appear in applications). Our goal, however, is not to give the



