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PREFACE

In computational mechanics, the first and quite often the most difficult part of a
problem is the correct formulation of the problem. This is usually done in terms of
differential equations. Once this formulation is accomplished, the translation of the
governing differential equations into accurate, stable, and physically realistic difference
equations can be a formidable task. By comparison, the numerical evaluation of these
difference equations in order to obtain a solution is usually much simpler. The present
notes are primarily concerned with the second task, that of deriving accurate, stable, and
physically realistic difference equations from the governing differential equations.
Procedures for the numerical evaluation of these difference equations are also presented.
In later applications, the physical formulation of the problem and the properties of the
numerical solution, especially as they are related to the numerical approximations
inherent in the solution, are discussed.

There are numerous ways to form difference equations from differential equations.
Some are more successful than others with the success of any particular method quite
often dependent on the problem to be solved. The first widely used method was the finite
difference method. In this method, one obtains difference equations by the use of local
expansions for the variables, generally truncated Taylor series. This procedure is
relatively simple and has been extensively used in practically all areas of dynamics where
numerical approximations have been needed. As with any approximate method, the
procedure has its shortcomings, e.g., frequent instability of the derived difference
equations and difficulty in properly treating boundary conditions.

In order to better derive the appropriate difference equations and eliminate some of
these difficulties, a volume integral method was developed (Tikhanov and Samarskii,
1956; Varga, 1962). In this method, the region of interest (in space and time) is divided
into finite volume elements. The governing equations are then integrated over each of
these elements. In order to form a difference equation, the terms in the resulting
equations must then be analytically approximated as well as possible. Various approaches

to do this have been developed; the most conventional and widely used procedure is to ap-
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proximate these terms using Taylor series expansions. This procedure as well as
improvements to this procedure will be described here. The volume integral method is
quite general (e.g., the usual finite-difference equations obtained by means of Taylor
series can also be obtained by this method as a special case) and it has been widely used as a
natural extension of the finite difference procedure without much recognition of its
versatility and power.

More recently, a general class of procedures called finite element methods has been
developed. To a large extent, these methods have appealed to engineers and scientists
because, just as in the volume integral method, the entire continuum is divided into a series
of control volumes or finite elements, each of which has physical meaning. The methods
have been extensively applied to problems in continuum dynamics, primarily in structures
but also in fluid dynamics.

Finite element methods usually consist of first multiplying the governing equations
by a weighting function (which may be a known function or the solution itself) and then
integrating the results over a volume element. In order to obtain a difference equation,
the solution and the weighting function are usually approximated by polynomials. This
approach is especially satisfactory for linear, non-dissipative systems. In this case, the
procedure is equivalent to finding the minimum or maximum value of a functional (such
as the potential energy of a system) and the solution is then the quantity that minimizes this
functional. For these and similar problems, the integrals of the weighted equations have
theoretical and physical significance and finite element methods work well. For other
cases, this is no longer true and finite element methods have not proved to be as
satisfactory. At the present time, finite element methods are quite popular, especially in
solid mechanics, for the above reasons and also because (a) the grid points can be
arbitrarily placed and problems with irregular boundaries can then be treated more
easily, and (b) the accuracy of the approximation can be improved relatively easily by
using higher order polynomials.

The finite difference, volume integral, and finite element methods can all be included
as special cases of a generalized finite element method (Zienkiewicz and Morgan, 1983).

A unified formulation, at least in theory, is then possible to cover all approximation pro-



\

cesses. It can also be readily shown that all three methods quite often give identical
approximation equations. However, although there are many similarities, the three
methods differ significantly in their practical details and are usually formulated
independently of each other.

Both the finite difference and finite element methods have significant limitations.
The volume integral method is superior to both of these methods in many respects and,
in the present notes, will be the primary method used in deriving difference equations.
Specific reasons for this choice are as follows. (1) The volume integral method is a logical
extension of the finite difference procedure with all its advantages but not all of its
disadvantages. Because of this, almost all of the work on finite difference equations is
directly applicable to the present method. (2) In the volume integral method, control
volumes or finite elements are used and the governing equations are then satisfied on the
average over each element. In this sense, the present method is analogous to the finite
element method. As in that method, the elements need not be uniform but can be variable
in size as well as triangular or another shape. Because of the use of volume elements, the
derivation of the correct difference equations at boundaries (closed as well as open) is
considerably simplified. (3) The integral method works directly with the fundamental
equations, e.g., the conservation equations, rather than with weighted equations as does
the usual finite-element method. The use of volume elements along with the governing
equations in conservation form allows one to enforce exact conservation of the dependent
variables (e.g., mass, momentum, and energy) as an integral over each element and
between each element as well as globally. This is not true for some finite difference and
for most finite element algorithms.

Other advantages of the integral method follow from an extension of the usual
procedure, an extension that incorporates approximate analytic solutions to the
differential equation in the formation of the corresponding difference equation. When a
good approximation to the differential equation is known, the accuracy of the
corresponding difference equation may be greatly increased over that obtained by the
standard Taylor series approximations. From this point of view, Taylor series

approximations are just comparatively poor solutions of the differential equation and lead
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to crude difference equations. The use of approximate analytic solutions also allows one
to readily transfer the analytic statements which one uses to approximate the physics into
numerical algorithms. This is especially useful at boundaries, where the derivation of the
correct numerical algorithm is simplified.

It will also be seen that, by using the present approach and making realistic
approximations to the solution within an element, it is very difficult to derive an incorrect
algorithm, that is, one that is inaccurate, completely unstable, or not reflecting the proper
physics. Although not completely foolproof, the procedure is almost foolproof and is
relatively unambiguous.

In Chapter 1, the volume integral method is applied to ordinary differential
equations. The purpose is not only to derive accurate, stable, and efficient algorithms for
ordinary differential equations but also to develop the proper ideas and procedures for
later use in deriving difference equations from partial differential equations.

Basic concepts in the applications of the volume integral method to partial
differential equations are discussed in Chapters 2, 3, and 4. Chapter 2 is concerned with
parabolic partial differential equations with much of the discussion centered on the simple
but important equation governing one-dimensional, time-dependent heat conduction.
Other more general parabolic equations are also treated. Chapter 3 is concerned with
hyperbolic equations, a representative case being the one-dimensional, time-dependent
linear wave equation. Equations for linear wave propagation in two space dimensions as
well as nonlinear wave equations are also discussed. In Chapter 4, the derivation of
difference equations for elliptic partial differential equations is presented. These
equations usually evolve from the steady-state limit of solutions where the time-dependent
problem is described by parabolic or hyperbolic equations. Hence, the discussion of
elliptic equations after parabolic or hyperbolic equations seems natural, even though in
some ways elliptic equations seem simpler than the other two.

Applications of these ideas and algorithms to specific problems are presented in
Chapter 5. The purpose here is to demonstrate the use of the basic ideas developed in
Chapters 1 through 4 to a variety of problems of practical interest. Specific problems are:

lake currents, sediment transport, chemical vapor deposition, and free-surface flows a-
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round submerged or floating bodies. In each case, the formulation of the problem, the
derivations of the appropriate difference equations, the solution of these equations, and a
brief discussion of the results, especially as they are related to the numerical
approximations inherent in the solution to the problem, are presented.

The present notes differ from a standard text on numerical analysis in several ways.
First, except for introductory material, the only procedure used here to derive difference
equations from differential equations is the volume integral method. The derived
equations include most of the standard types of finite difference algorithms as well as
many others. The use of only one procedure to derive difference equations rather than the
use of several procedures as is usually done hopefully makes the presentation easier to
understand. The idea is not only to present the difference equations and their derivations
but more generally to present a rational procedure for deriving new and improved
difference equations.

Second, the derivation and use of the difference equations are related more closely to
the basic physical problem than is ordinarily done in a standard text. This is done because
it is believed that a good understanding of the correct formulation of the problem and at
least a qualitative understanding of the solution to the problem are both useful in the
derivation of the optimum difference equation and in obtaining an accurate numerical
solution.

It will be seen that the present notes describe mostly elementary theory and
applications. Nevertheless, it is hoped that the notes do demonstrate the potential of the
volume integral method and, because of this, will encourage further work on this method.

Much of the work presented here was done as part of the author's research on water
pollution. As such, the work was partially supported by the U.S. Environmental
Protection Agency. Dr. Louis Swaby, Mr. Bill Richardson, and Dr. Anthony Kizlauskas
were the project officers. I am grateful to them for their support and encouragement. I
would like to thank Dr. C. Kirk Ziegler for many discussions on numerical methods and
for doing many of the calculations. James Lick was responsible for much of the graphical
work. Iam also grateful to Ms. June Finney for her great patience and care in typing and

proofreading the manuscript.
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1. ORDINARY DIFFERENTIAL EQUATIONS

The major purpose of the present chapter is to demonstrate the use of the volume
integral method in deriving accurate, stable, and physically realistic difference equations
from ordinary differential equations. A secondary purpose is to develop the proper ideas
and procedures for later use in deriving difference equations from partial differential
equations.

Ordinary differential equations come in many different shapes and sizes and can be
described, for example, by such terms as (a) a single equation or a system of equations; (b)
first-order, second-order, or higher-order equations; (c) linear or nonlinear; and (d)
homogeneous or non-homogeneous. These terms describe different properties of
ordinary differential equations and certainly the difference equations derived from these
differential equations must reflect these properties, at least in some approximate manner.
Nevertheless, the general procedure for deriving difference equations by means of the
volume integral method does not depend on these properties.

Problems described by ordinary differential equations can also be classified as either
initial-value problems or boundary-value problems. In initial-value problems, the
solution depends on conditions prescribed only at one end of the interval of interest. In
boundary-value problems, the solution depends on conditions prescribed at both ends of
the interval. The distinction between initial-value and boundary-value problems is of
importance in the application of the volume integral method. It will be seen later that this
distinction is also of importance in partial differential equations.

The chapter begins by illustrating the derivation of difference equations from simple
differential equations by the conventional approach, by the use of Taylor series. The
volume integral method is then introduced and illustrated by applications to the same
differential equations. Extensions and more interesting applications of the method to
boundary-value problems (second order), initial-value problems (first- or higher-order),
and higher-order boundary-value problems are then presented. For simplicity, the

assumption is generally made that the grid spacing is uniform; however, for generality,
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the procedure for deriving difference equations with non-uniform grid spacing is also

presented and demonstrated in a few cases.

1.1 Difference Equations by Means of Taylor Series

As a first example, consider one-dimensional, steady-state heat conduction in a solid
(0<x < 1). The solid is assumed to have constant properties. Internal heat sources are
present such that the heating is proportional to -x1/2. The surface temperature of the solid
at x = 0 is kept fixed while the other surface at x = 1 is insulated. In dimensionless

variables, the appropriate equations are:

2

%ﬂm, w0 =0, Lay=o (@3

The exact solution to this problem is

u=—X"-=X (1.1.2)

and is shown in Figure 1.1-1.

Taylor Series (Uniform Grid)
Let us review the standard procedure for obtaining difference equations from

differential equations by means of Taylor series. The interval 0 < x < 1 is first divided

into I-1 equally spaced intervals such that
x;=(-1)Ax, i=1,2,....I (1.1.3)
The dependent variable u(x) will be evaluated at these grid points and is given there by

u(x;) =y (1.1.4)
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Figure 1.1-1. Plot of u = 5% 3 X
By expanding u(x + Ax) in a Taylor series about the point x, one obtains

3
d u(
dx3

2 2
_ du du, ,Ax
u(x + Ax) = u(x) + Ix (x)Ax + dx2\x) 2 +

In the notation defined above, this becomes

2 2 3 3
_ du du | Ax du | Ax
ui+l_ui+(_dx),Ax+(dx2) 2 +(dx3j 3 + ...

1

i i

Similarly, the value of u(x-Ax) can be written as

dx? 2 dx3 3

i i

2 2 3 3
u._ . =u. - d_u)Aer(du)Ax _(du) 2 bon

3
x)A:;; + ...

(1.1.5)

(1.1.6)

1.1.7)

The derivative (du/dx); can readily be approximated from the above equations.



From Eq. (1.1.6), one obtains

(d_u) _ Wiy _(dzujﬂ+
dx '_ Ax dx2 2 .o

! i

_ui+1—ui+0(AX)~ui+—l_u_i 1.1.8
= il z it (1.18)

This is referred to as a forward difference approximation to (du/dx); and is accurate up to
terms of 0(Ax), i.e., the truncation error is 0(Ax). It is a first-order approximation, or a
first approximation to (du/dx);.

Similarly, one can solve Eq. (1.1.7) for (du/dx); and one obtains

du) _ Yi Yy d2u Ax
(d_x) Ax +(dx2 g T

¥ i

_ Ui~ Ui +0(Ax) = Ui-Ujg

Ax Ax (1.1.9)

This is referred to as a backward difference approximation to (du/dx);. Egs. (1.1.8) and
(1.1.9) are of the same accuracy. Which one is used as an approximation in an equation
depends on the problem as will be demonstrated later.

A more accurate expression for (du/dx); can be obtained by subtracting Eq. (1.1.7)
from Eq. (1.1.6) and solving for (du/dx),. One obtains

(d_u) _ M Yia _(d3u Ax?
) =T Ik o3) 3t

i
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This is referred to as a central difference approximation to (du/dx); and is accurate up to
0(Ax2). It is a second-order approximation, or a second approximation to (du/dx);.

To obtain a finite difference approximation for (d*u/dx?);, one can add Eqs. (1.1.6)
and (1.1.7) and solve for (d?u/dx2);. The result is

(dzu] B T e e T _2(d4u) Ax?
dx? Ax? x*/) 4 -

i i

_ Min —i‘;i2+Ui_l +0(AxD)

u. . —2u.+u,
1 i i—

i+ 1
Ax?

n

(1.1.11)

This is a central difference approximation to (d?u/dx?); and is a second-order
approximation.

It is important to note that, although Eq. (1.1.11) approximates (d?u/dx?); to 0(Ax?),
this says nothing about the accuracy of a solution to a difference equation involving this
derivative! For example, terms in a difference equation may all be second-order accurate
but the difference equation itself may be unstable making accuracy a meaningless word in
this context.

For the example problem defined by Eq. (1.1.1), the above arguments lead to the
following difference equations:

u,, —2u +u,_ =x?Ax? i=2,3,..,I-1 (1.1.12)

i+ 1



u,=0 (1.1.13)

u -y ,=0 (1.1.14)

Note that differences in the first equation are 0(A?) while the last difference is only 0(A).
The solution to a set of difference equations is usually only as accurate as the least accurate
difference equation of the set and therefore the above set of equations is formally only
first-order accurate. The actual accuracy of a set of equations may differ quite drastically
from these simple estimates however.

In order to improve the accuracy of the solution as given by Egs. (1.1.12), (1.1.13),
and (1.1.14), a better approximation to (du/dx), must be obtained. This can be done as

follows. By Taylor series, one can approximate u, , and u;, by

u =u - () Ax+( )(—)+ (1.1.15)
I I

2
u,=u-2( ) ax +4[ j(—)+ (1.1.16)
I

I

In order to eliminate the 0(Ax?) terms, multiply Eq. (1.1.15) by four and subtract Eq.
(1.1.16). The result for (du/dx), is then

(d_ll) _ 3111- 4UI_1 + Upo +0(AX2)

1.1.17
dx ! 2AX ( )

One can then use this expression with (du/dx); = 0 to replace Eq. (1.1.14). Egs. (1.1.12),
(1.1.13), and (1.1.14) will then be uniformly 0(Ax2).

Another approach sometimes used at a boundary is the method of false points. In this
approach, fictitious grid points are introduced which extend beyond the original



