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Preface

Changes in this third edition have been primarily motivated by our own teaching ex-
periences as well as by the comments of others who use the text. Technology, though,
has also dictated certain revisions. The widespread use of statistical software packages
has brought certain topics and concepts to the fore, while diminishing the relevance
of others. All in all, we feel that this new edition has a sharper focus and that stu-
dents will find it more accessible and easier to use.

Many of the major changes come in the middle third of the book, much of which
has been rewritten. These are the chapters that make the critical transition from prob-
ability to statistics. We have taken a variety of steps to make that material come more
alive, ranging from the addition of more helpful examples to the frequent use of com-
puter simulations.

Chapter 4, for example, now addresses more fully the important question of why
certain measurements are modeled by particular probability functions. Relationships
that exist between pdfs are given more attention, and the connection between theo-
retical models and sample data is explored in greater depth. Chapter 5 has been re-
structured. In the new edition, methods of estimation come first and the underlying
theory is taken up last. That arrangement makes it easier for instructors to adjust the
amount of time spent on estimation to whatever suits their individual needs. In Chap-
ter 6, the principles of decision-making are now introduced in the context of testing
Hy: w = pgrather than Hy: p = p,.The result is a more steamlined presentation that
avoids the complications inherent in a test statistic whose pdf is discrete.

Positioned between Chapter 7, which deals with the normal distribution, and
Chapters 9 through 14, where the various techniques for analyzing data are intro-
duced, is a new chapter on experimental design. Chapter 8 profiles seven of the most
frequently encountered “data models.” The basic characteristics of each design are
discussed as well as the types of questions each seeks to answer. By providing a
framework and a theme, Chapter 8 brings cohesion and a sense of order to the chap-
ters that follow.

Chapter 11 (Regression) has also been changed substantially. It now begins with
curve-fitting, then introduces the linear model, and eventually concludes with the
bivariate normal. Regression “diagnostics” have been added to the new edition, and
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the various inference procedures associated with the linear model have been
explained and delineated more carefully.

Our overriding motivation in deciding which topics to present—and in what
order—stem from our objective to write a book that emphasizes the interrelation
between probability theory, mathematical statistics, and data analysis. We believe that
integrating all three is vitally important, particularly for those students who take only
one statistics course during their college careers. Our experience in the classroom
has certainly strengthened our faith in this approach: Students can more clearly see
the importance of each of the three when viewed in the context of the other two.

Pedagogical Enhancements

Other changes have been implemented throughout the book as well. New case studies
and examples have been added; others have been updated, revised, or replaced. The
number of exercises has been substantially expanded, a 50% increase in some sections.
Many chapters have a “MINITAB Applications” Appendix. Included is the syntax for
doing whatever procedures appear in that chapter, along with a discussion of the out-
put. Answers to most odd-numbered exercises are given at the end of the book.

Supplements

Instructor’s Solutions Manual. This resource contains worked-out solutions to all text
exercises (0-13-922311-8).

Student Solutions Manual: Featuring complete solutions to odd-numbered exercis-
es, this is a great tool for students as they study and work through the problem ma-
terial (0-13-031015-8).
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CHAPTER 1

Introduction

Francis Galton

“Some people hate the very name of statistics, but 1 fmd them full of beauiy and
interest. Whenever they are not brutalized, but dahqat‘ely handled by the hlgher
‘methods, and are warily interpreted, their power of dealing with compllcated
phenomena is extraordinary. They are the only tools by which an opening can be cut
through the form:dable thlcket of d:ff:cult:es that. bars the path of those who pursue
the Science of man.”
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1.1

Chapter 1 Introduction

A BRIEF HISTORY

Statistics is the science of sampling. How one set of measurements differs from an-
other and what the implications of those differences might be are its primary concerns.
Conceptually, the subject is rooted in the mathematics of probability, but its applica-
tions are everywhere. Statisticians are as likely to be found in a research lab or a field
station as they are in a government office, an advertising firm, or a college classroom.

Properly applied, statistical techniques can be enormously effective in clarify-
ing and quantifying natural phenomena. Figure 1.1.1 illustrates a case in point. Pic-
tured at the top is a facsimile of the kind of data routinely recorded by a
seismograph—Ilisted chronologically are the occurrence times and Richter magni-
tudes for a series of earthquakes. Viewed in that format, the numbers are largely
meaningless: No patterns are evident, nor is there any obvious connection between
the frequencies of tremors and their severities.

Episode number Date Time Severity (Richter scale)
217 6/19 4:53 P M. 2.7
218 712 6:07 AM. 3.1
219 714 8:19 AM. 2.0
220 8/7 1:10 AM. 4.1
221 8/7 10:46 p.m. 3.6
°
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Section 1.1 A Brief History 3

By way of contrast, the bottom of Figure 1.1.1 shows a statistical summary (using
some of the regression techniques we will learn later) of a set of seismograph data
recorded in southern California (59). Plotted above the Richter (R) value of 4.0, for
example, is the average number (N) of earthquakes occurring per year in that region
having magnitudes in the range 3.75 to 4.25. Similar points are included for R-values
centered at 4.5,5.0,5.5,6.0,6.5,and 7.0. Now we can see that the two variables are re-
lated: Describing the (N, R)’s exceptionally well is the equation N = 80,338.16¢"**'%,

In general, statistical techniques are employed either to (1) describe what did
happen or (2) predict what might happen. The graph at the bottom of Figure 1.1.1 does
both. Having “fit” the model N = Bye1¥ to the observed set of minor tremors (and
finding that 8, = 80,338.16 and 3, = —1.981), we can then use that same equation to
predict the likelihood of events not represented in the data set. If R = 8.0, for ex-
ample, we would expect N to equal 0.01:

N = 80,338.16¢ 181(30)
= 0.01

(which implies that Californians can expect catastrophic earthquakes registering on
the order of 8.0 on the Richter scale to occur, on the average, once every 100 years).

It is unarguably true that the interplay between description and prediction—sim-
ilar to what we see in Figure 1.1.1—is the single most important theme in statistics.
Additional examples highlighting other aspects of that connection will be discussed
in Section 1.2. To set the stage for the rest of the text, though, we will conclude Sec-
tion 1.1 with brief histories of probability and statistics. Both are interesting stories,
replete with large casts of unusual characters and plots that have more than a few un-
expected twists and turns.

Probability: The Early Years (Optional)

No one knows where or when the notion of chance first arose; it fades into our pre-
history. Nevertheless, evidence linking early humans with devices for generating ran-
dom events is plentiful: Archaeological digs, for example, throughout the ancient
world consistently turn up a curious overabundance of astragali, the heel bones of
sheep and other vertebrates. Why should the frequencies of these bones be so dis-
proportionately high? One could hypothesize that our forebearers were fanatical
foot fetishists, but two other explanations seem more plausible: The bones were used
for religious ceremonies and for gambling.

Astragali have six sides but are not symmetrical (see Figure 1.1.2). Those found
in excavations typically have their sides numbered or engraved. For many ancient
civilizations, astragali were the primary mechanism through which oracles solicited
the opinions of their gods. In Asia Minor, for example, it was customary in divination
rites to roll, or cast, five astragali. Each possible configuration was associated with
the name of a god and carried with it the sought-after advice. An outcome of
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FIGURE 1.1.2

Sheep astragalus

(1, 3, 3, 4, 4), for instance, was said to be the throw of the savior Zeus, and its ap-
pearance was taken as a sign of encouragement (34):

One one, two threes, two fours
The deed which thou meditatest, go do it boldly.
Put thy hand to it. The gods have given thee
favorable omens
Shrink not from it in thy mind, for no evil
shall befall thee.

A (4,4,4,6,6),o0n the other hand, the throw of the child-eating Cronos, would send
everyone scurrying for cover:

Three fours and two sixes. God speaks as follows.
Abide in thy house, nor go elsewhere,
Lest a ravening and destroying beast come nigh thee.
For I see not that this business is safe. But bide

thy time.

Gradually, over thousands of years, astragali were replaced by dice, and the lat-
ter became the most common means for generating random events. Pottery dice have
been found in Egyptian tombs built before 2000 B.C.; by the time the Greek civiliza-
tion was in full flower, dice were everywhere. (Loaded dice have also been found.
Mastering the mathematics of probability would prove to be a formidable task for our
ancestors, but they quickly learned how to cheat!)

The lack of historical records blurs the distinction initially drawn between div-
ination ceremonies and recreational gaming. Among more recent societies, though,
gambling emerged as a distinct entity, and its popularity was irrefutable. The Greeks
and Romans were consummate gamblers, as were the early Christians (82).

Rules for many of the Greek and Roman games have been lost, but we can rec-
ognize the lineage of certain modern diversions in what was played during the Mid-
dle Ages. The most popular dice game of that period was called hazard, the name
deriving from the Arabic al zhar, which means “a die.” Hazard is thought to have
been brought to Europe by soldiers returning from the Crusades; its rules are much
like those of our modern-day craps. Cards were first introduced in the fourteenth
century and immediately gave rise to a game known as Primero, an early form of
poker. Board games, such as backgammon, were also popular during this period.
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Given this rich tapestry of games and the obsession with gambling that char-
acterized so much of the Western world, it may seem more than a little puzzling that
a formal study of probability was not undertaken sooner than it was. As we will see
shortly, the first instance of anyone conceptualizing probability, in terms of a mathe-
matical model, occurred in the sixteenth century. That means that more than 2000
years of dice games, card games, and board games passed by before someone finally
had the insight to write down even the simplest of probabilistic abstractions.

Historians generally agree that, as a subject, probability got off to a rocky start
because of its incompatibility with two of the most dominant forces in the evolution
of our Western culture, Greek philosophy and early Christian theology. The Greeks
were comfortable with the notion of chance (something the Christians were not), but
it went against their nature to suppose that random events could be quantified in any
useful fashion. They believed that any attempt to reconcile mathematically what did
happen with what should have happened was, in their phraseology, an improper jux-
taposition of the “earthly plane” with the “heavenly plane.”

Making matters worse was the antiempiricism that permeated Greek thinking.
Knowledge, to them, was not something that should be derived by experimentation.
It was better to reason out a question logically than to search for its explanation in a
set of numerical observations. Together, these two attitudes had a deadening effect:
The Greeks had no motivation to think about probability in any abstract sense, nor
were they faced with the problems of interpreting data that might have pointed them
in the direction of a probability calculus.

If the prospects for the study of probability were dim under the Greeks, they be-
came even worse when Christianity broadened its sphere of influence. The Greeks and
Romans at least accepted the existence of chance. They believed their gods to be ei-
ther unable or unwilling to get involved in matters so mundane as the outcome of the
roll of a die. Cicero writes:

Nothing is so uncertain as a cast of dice, and yet there is no one who plays often who does
not make a Venus-throw! and occasionally twice and thrice in succession. Then are we,
like fools, to prefer to say that it happened by the direction of Venus rather than by
chance?

For the early Christians, though, there was no such thing as chance: Every event that
happened, no matter how trivial, was perceived to be a direct manifestation of God’s
deliberate intervention. In the words of St. Augustine:

Nos eas causas quae dicuntur fortuitae ... non dicimus
nullas, sed latentes; easque tribuimus vel veri Dei...

(We say that those causes that are said to be by chance
are not non-existent but are hidden, and we attribute
them to the will of the true God...)

Taking Augustine’s position makes the study of probability moot, and it makes a
probabilist a heretic. Not surprisingly, nothing of significance was accomplished in
the subject for the next fifteen hundred years.

When rolling four astragali, each of which is numbered on four sides, a Venus-throw was having
each of the four numbers appear.
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It was in the sixteenth century that probability, like a mathematical Lazarus,
arose from the dead. Orchestrating its resurrection was one of the most eccentric fig-
ures in the entire history of mathematics, Gerolamo Cardano. By his own admission,
Cardano personified the worst and the best—the Jekyll and the Hyde—of the Re-
naissance man. He was born in 1501 in Pavia. Facts about his personal life are diffi-
cult to verify. He wrote an autobiography, but his penchant for lying raises doubts
about much of what he says. Whether true or not, though, his “one-sentence” self-
assessment paints an interesting portrait (117):

Nature has made me capable in all manual work, it has given me the spirit of a philoso-
pher and ability in the sciences, taste and good manners, voluptuousness, gaiety, it has
made me pious, faithful, fond of wisdom, meditative, inventive, courageous, fond of learn-
ing and teaching, eager to equal the best, to discover new things and make independent
progress, of modest character, a student of medicine, interested in curiosities and dis-
coveries, cunning, crafty, sarcastic, an initiate in the mysterious lore, industrious, diligent,
ingenious, living only from day to day, impertinent, contemptuous of religion, grudging,
envious, sad, treacherous, magician and sorcerer, miserable, hateful, lascivious, obscene,
lying, obsequious, fond of the prattle of old men, changeable, irresolute, indecent, fond
of women, quarrelsome, and because of the conflicts between my nature and soul I am
not understood even by those with whom I associate most frequently.

Formally trained in medicine, Cardano’s interest in probability derived from
his addiction to gambling. His love of dice and cards was so all-consuming that he is
said to have once sold all his wife’s possessions just to get table stakes! Fortunately,
something positive came out of Cardano’s obsession. He began looking for a math-
ematical model that would describe, in some abstract way, the outcome of a random
event. What he eventually formalized is now called the classical definition of proba-
bility: If the total number of possible outcomes, all equally likely, associated with
some action is n and if m of those n result in the occurrence of some given event,
then the probability of that event is m/n. If a fair die is rolled, there are n = 6 possi-
ble outcomes. If the event “outcome is greater than or equal to 57 is the one in which
we are interested, then m = 2 (the outcomes 5 and 6) and the probability of the event
is 2/6, or 1/3 (see Figure 1.1.3).

Cardano had tapped into the most basic principle in probability. The model he
discovered may seem trivial in retrospect, but it represented a giant step forward:
His was the first recorded instance of anyone computing a theoretical, as opposed to
an empirical, probability. Still, the actual impact of Cardano’s work was minimal. He

FIGURE 1.1.3
° ] e 2 Outcomes greater
than or equal to
e 3 ° 4 S; probability = 2/6
e

Possible outcomes
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wrote a book in 1525, but its publication was delayed until 1663. By then, the focus
of the Renaissance, as well as interest in probability, had shifted from Italy to France.

The date cited by many historians (those who are not Cardano supporters) as
the “beginning” of probability is 1654. In Paris a well-to-do gambler, the Chevalier de
Mere, asked several prominent mathematicians, including Blaise Pascal, a series of
questions, the best-known of which was the problem of points:

Two people, A and B, agree to play a series of fair games until one person has won six
games. They each have wagered the same amount of money, the intention being that the
winner will be awarded the entire pot. But suppose, for whatever reason, the series is pre-
maturely terminated, at which point A has won five games and B three. How should the
stakes be divided?

[The correct answer is that A should receive seven-eighths of the total amount wa-
gered. (Hint: Suppose the contest were resumed. What scenarios would lead to A’s
being the first person to win six games?)]

Pascal was intrigued by de Mere’s questions and shared his thoughts with Pierre
Fermat, a Toulouse civil servant and probably the most brilliant mathematician in
Europe. Fermat graciously replied, and from the now famous Pascal-Fermat corre-
spondence came not only the solution to the problem of points but the foundation for
more general results. More significantly, news of what Pascal and Fermat were work-
ing on spread quickly. Others got involved, of whom the best known was the Dutch
scientist and mathematician Christiaan Huygens. The delays and the indifference that
plagued Cardano a century earlier were not going to happen again.

Best remembered for his work in optics and astronomy, Huygens, early in his ca-
reer, was intrigued by the problem of points. In 1657 he published De Ratiociniis in
Aleae Ludo (Calculations in Games of Chance), a very significant work, far more
comprehensive than anything Pascal and Fermat had done. For almost 50 years it
was the standard “textbook” in the theory of probability. Huygens, of course, has sup-
porters who feel that he should be credited as the founder of probability.

Almost all the mathematics of probability was still waiting to be discovered.
What Huygens wrote was only the humblest of beginnings, a set of 14 propositions
bearing little resemblance to the topics we teach today. But the foundation was there.
The mathematics of probability was finally on firm footing.

Statistics: From Aristotle to Quetelet (Optional)

Historians generally agree that the subject of statistics began to take definite shape
in the middle of the nineteenth century. What triggered its emergence was the union
of three different “sciences,” each of which had been developing along more or less
independent lines (184).

The first of these sciences, what the Germans called Staatenkunde, involved the
collection of comparative information on the history, resources, and military prowess
of nations. Although efforts in this direction peaked in the seventeenth and eigh-
teenth centuries, the concept was hardly new: Aristotle had done something similar
in the fourth century B.c. Of the three movements, this one had the least influence on



