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- PREFACE

The Peierls Symposium, in honour of Sir Rudolf Ernst Peierls on the
occasion of his retirement from the Wykeham Chair of Theoretical Physics in
the University of Oxford, was held at Oxford on July llith & 12th, 1974. The
two hundred participants all had some professional connection with Peierls,
and the invited speakers were each asked to talk on some development in
physics with which Peierls had been particularly associated. It is these
invited talks, together with some of the discussion that followed them, which
are reproduced in this volume. They range in style from the historical remin-—
iscence to the up-to-date review survey. The topics covered span a wide range
of theoretical physics, including nuclear theory, statistical mechanics, solid
state physics and elementary particle physics, mirroring the great breadth of
Peierls' own interests.

The invited talks were recorded, and from the tapes we produced a draft
version, which was put into final form by the speakers themselves. We are
greatly indebted to them for the care and speed with which they corrected the
draft manuscripts.

We deliberately asked the speakers not to eliminate all colloquialisms.
The occasion had the spirit, which we wished to preserve, of a gathering of an
"extended family", the creation of which may be regarded as a significant part
of Peierls' scientific achievements. We hope that the personal flavour of the
contributions will still come across, even in this printed form.

We know we speak for very many physicists, and their families, all over
the world, when we offer to Professor Sir Rudolf and Lady Peierls our sincere

thanks and very best wishes.

Oxford, May 1976 I. J. R. Aitchison

J. E. Paton
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The Scattering of Pions
by Nuclei

H. A. BETHE

I want to talk about the scattering of pions by nuclear matter and by
finite nuclei. It is assumed in this that you know the scattering by a
nucleon, and the question is to derive the scattering by a complex system from
the scattering by one nucleon.

We begin with an equation which is familiar from the theory of the
refractive index n in electrodynamics and optics, namely that the wave number
in the medium k is related to the wave number in vacuum k0 by the equation

12 = koz + 4mpf(k, 0) a.n

which contains as the main part the forward scattering amplitude f(k,o0). The
ko, of course, in the case of pions, is related to the energy w by the equa-

tion
k =w -u €1.2)

If I consider pions of energy, let's say, up to 300-400 MeV, which is
what I am interested in here, then the scattering is mostly by S- and P-waves

and therefore the forward scattering amplitude is expected to be of the form

f(k,0) = ao + a]k (1.3)

where the constant a, represents the P-wave scattering.
Now if you put these things together, and this has been done many years
ago - although not in exactly this form - then you find k2 in terms of the

energy
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2 wz - uz + Anpao(m)

k" === 4mpa, (@) (1.4)

and the important part here is the denominator which is 1 - hﬂpal(w) where p
is the density of scatterers (density of nucleons) and al(w) is the P-wave
scattering amplitude (apart from the factor kz). This is a minor catastrophe;
namely, a, might very well be just big enough so that the denominator becomes
zero. You may say it can't become zero because a, is complex - the scattering
amplitude is complex - but nevertheless we are still in trouble. For one
thing, at very low energy the scattering amplitude is real; but for another
thing, the imaginary part of the scattering amplitude always tells you the
probability of having processes which remove the particles - the pions - from
the incident beam. Now in the case of pion scattering by an assembly of
nucleons, that is the probability of scattering in a collision with a single
nucleon which is usually called a quasi-elastic collision if it happens in a
nucleus. Now the imaginary part of al(w) therefore surely is different when
the nucleons are inside the nucleus from what it is for free nucleons, because
for free nucleons I have no impediment to scattering and inside the nucleus I

have. So it is surely wrong to consider a, to be the same quantity which you

derive from the scattering of a pion by a éree nucleon. Now if I take zero
energy then the denominator is indeed zero, at a density of %u3, which is just
about two-thirds of the density of normal nuclear matter. The density of
normal nuclear matter is .16 per (Fermi)3 and that's just about one-half u3.
(4 is the reciprocal Compton wavelength of the pion and is about .7 inverse
Fermis).

So this has been the status of the subject, more or less, for some twelve
years, until a paper by Barshay, Rostokin and Vagradov (1) in 1973. Another
paper putting the same idea in a much simpler and more transparent fashion
followed, by Barshay, Brown and Rho (2). They took the point of view that
really what happens in pion-nucleon scattering is essentially that the pion
makes the nucleon into a resonant particle, into a A particle, and they then
proved that this is the only part of the pion scattering which will survive
inside nuclear matter. Then you automatically find that your al(w) contains
the wavenumber of the pion inside nuclear matter and everything is all right.
What I have to say today is rather in the spirit of this but it goes more
explicitly into the pion dynamics.

The fundamental theory of the pion scattering in nuclear matter was

developed by Dover and Lemmer, published about a year ago in Physical
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Review (3). They made the very simple statement that what you have to calcu-
late is the self-energy of the pion (which is given by the diagram in

Fig. 1.1(a))inside the nuclear matter, and you then have in this diagram a
loop of a nucleon, which you can cut at one or two points. If you cut it at
one point you get the diagram Fig. 1.1(b), which is the familiar scattering
diagram for pions which is responsible for (3,3) scattering, and if you cut
it at the other point, you get the diagram of Fig. 1.1(c), in which you get

first absorption, and then re-remission of the pion.

'

Fig. 1.1. The pion self-energy diagram, and its appearance when it is cut at
one or another point on the nucleon line.

Now to put this in terms of a formula, what you want to calculate is the
self-energy which I call II. (By the way, the self-energy is defined by Dover
and Lemmer in such a way that k, the wavenumber in nuclear matter is positive
if II is positive, in other words positive Il means an attractive potential).

Remembering the diagram of Fig. 1.1, where I cut the nucleon line, you
will see that the scattering is essentially the derivative of the pion self-
energy with respect to the number of nucleons in that state which I am consid-
ering. I have here one nucleon line and have, in fact, many nucleons that I
can choose from, so the Il depends on the occupation number of the states in
nuclear matter N(p), p being the momentum of the nucleon. (By the way, I find
it useful to avoid confusion to always use p for nucleon and always k for
pions, then you can recognise what you see in every formula). So the deriva-
tive of the self-energy with respect to the occupation number is just the
forward scattering amplitude which we had before.

Now we have to look at this occupation number. What happens when I build
up the density in nuclear matter? I start out by putting nucleons in the
lowest momentum state, and then higher momentum states as the density goes up,
so when I change the density from p to p + dp, what I add is simply occupation

in those nucleon states which are just at the surface of the Fermi sea, and
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therefore have a nucleon momentum equal to the Fermi momentum, Pp- And so
dll/dp will be an average over the direction of the nucleon relative to the
pion of the forward scattering amplitude, and this average I call fav' What
you have then because of this derivative is something very similar to the
original formula, (Eq. 1.1) from the optical theorem, only in that expression
I had, as you will remember, p times the forward scattering amplitude, while
now I have an integral of the forward scattering amplitude over dp - not much
difference.

What I have talked about so far is the scattering of a pion by a single
nucleon. Of course, it is perfectly possible to have also scattering in which
more than one nucleon is involved. I can have the pion come in, put one
nucleon up into an excited state and then have an interaction of this with
another nucleon. I make another particle-hole pair, and then the pion goes

back out again. This is illustrated by Fig. 1.2.

P

Fig. 1.2. A two-nucleon contribution to the pion self-energy; a and b are
the two nucleons.

This two-nucleon scattering can, of course, be fairly complicated, but it has
been shown, especially by Gerry Brown and a few of his collaborators, that the
essential point in this diagram is the fact that two nucleons never can come
very close to each other. There is a correlation function between nucleons
which is zeroat zero distance because of the strong repulsion at short dis-
tance, and once this is the case, once you have a strong anti-correlation of
this type, this two-nucleon process reduces simply to the Lorentz-Lorentz
factor, that is, instead of having 4ﬂpa] (this holds only for the P-wave

scattering) you should divide this by 1 + %; pa,. So you have reduced it to a
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problem already solved in electrodynamics. The rest of the two-nucleon corre-
lation apparently makes very little difference.

With this amendment then, we have essentially the same as I had in
Eq. 1.4. The critical density now goes up, as you can easily convince your-
self, to three-halves of what it was before and therefore just about to the
density of nuclear matter. So you are still in trouble. The relation between
wavenumber inside and wavenumber outside is
1+ (4n/3)pal(w)
= @1/3)pa, @ ¢.3

kz g[ wz - uz + Anpao(w)]

I repeat that Il of course is complex because the scattering amplitude is com-—
plex, the state k of the pion always decaying by quasi-elastic scattering.

The next step is to calculate the forward scattering amplitude. Fortu-
nately, this can be done in essentially the same way as it is done for free
pions by the Chew-Low theory. In the Chew-Low theory, as you may remember,
the pions are treated relativistically, but the nucleons are treated stati-
cally or non-relativistically. In the Chew-Low theory the main thing is that
you have an incident nucleon, and an incident pion, and you first emit a
second pion, the nucleon thereby goes into state A, then you absorb the inci-
dent pion in state B, etc., etc., until the final pion comes out. The point
is now, that in the Chew-Low theory, nearly all the interaction comes from
intermediate pions of very high energy, because the dispersion integral which
I will show you in a minute is linearly divergent with the momentum of the
pion. Therefore this pion momentum is likely to be very high and therefore the
corresponding nucleon momenta are also high until your final pion is emitted.
This has two consequences:

1. The nucleon intermediate states have high momenta and therefore presumably
are not affected by the Pauli principle. .
2. Because of the formula

2

2
k® =k ©+ 1 (1.6)

you can show that the self-energy of the pion remains finite or even goes down
at high energy. Therefore as you go to high energy the momentum of the pion
inside the nucleus is about the same as it is outside, and therefore the pion
propagators which you have in the Chew-Low expansion will be the same as if
the pion were free. Therefore, not only can you use the formalism of Chew and
Low, but even the number should remain the same because the main part of the

dispersion integral - namely the high energy part - remains unchanged. That's
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the main point of the theory.
In the Chew-Low theory you separate the scattered amplitude
2T

Th (WP, (k') (1.7

£ oW =~
<k (wkwlf.)]/2 o

into an angular factor and a factor h depending on the energy of the pion.
The angular factor corresponds to the various isospin and spin states. The
interesting thing is the energy dependent factor, for which you get a disper-

sion integral

A
ha(w) = 7%-+ %\lhwq q3v2(q) i8S
2 2 *
. ]ha(wq)l IhB(wq)I

—_— +
W - w= 1€ 0B w +w
q q
The first term in the dispersion integral denotes the fact that you can emit
a pion of a different momentum and then re-absorb it, and in doing so, you get
p 2 . i s
each time a factor ha’ and so you get lhal , with the requisite energy denom-
inator.
Now to solve this equation, Chew and Low have shown that it is most con-

venient to use not ha but to define a new quantity
g = X/zha(z) (1.9)

where z is simply a generalisation, a complex generalisation, of the energy.
It's just the energy taken in the complex plane. Now why is that convenient?
It is convenient because the term Ihal2 is determined from unitarity, and uni-
tarity is expressed in the fact that h, the scattering amplitude, is essen-
tially siné eis. As you know if you take the reciprocal of this, you get
e_ia/sind, which has the very agreeable property that its imaginary part is
simply minus i and does not depend in any way on the process you are actually
considering, and it is this which then permits the solution of the problem;
and so the g, 8oes to cotéa—i.

I said already that you have to consider unitarity but in order to con-
sider unitarity, it is essential that you use real values of the momentum k.
As soon as you use complex values you get into all sorts of troubles and I
know that very well because for about five months I struggled with just this
problem: how can I put in unitarity when k is a complex number? And a complex
number it ought to be from Eq. 1.6 because the self-energy Il is complex, and
ko is real, because it is w2 - uz. Well, the help for that was provided by a
suggestion in a seminar at the University of Washington just about a year ago

at which Professor Peierls was present. The suggestion was to make full use
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of the flexibility of complex variables which were introduced into the problem
by Chew and Low, namely: what do you have in the complex energy plane, in the
complex omega plane? Well, you have an origin, and you have a branch point

at Y, the mass of the pion; then usually you take a branch cut along the real
omega axis, but nobody tells you where to put the branch cut as long as it
goes from the branch point to infinity. So why not make it go differently,

why not make it go along the line on which k is real and omega therefore com—

plex?
W=
(0] W —
(.U:O \\ 7
\l__ //

w-plane

— = —-kreal —Wreal
Fig. 1.3 The complex w plane. ® = origin, —----——-- line of real k, x = a

possible value of z; solid line is branch cut along line of real w.

I say that for real k, omega will be complex. Why do I need real values
of k? This is most easily seen from the old Rayleigh scattering formula; you
know that you have a plane wave eikz plus spherical waves, as you generally
expand in incoming and outgoing spherical waves which have the form exp(*ikr).
Clearly you get into trouble if you make k complex, either with the ingoing or
with the outgoing spherical waves. So you have to choose k real to be able to
define the phase shift. So I go along the solid line in Fig. 1.3 taking k
real, and then I can use the fact that I know, from the phase shift expression
for h, the imaginary part of the quantity zg(z), and I know this just on the
positive side of the branch cut. That represents the physically permitted
values which lead to outgoing spherical waves. These still have a negative
imaginary part of omega but they are on the positive side of the branch cut.
So you have this imaginary part because of the form of h, which is directly
given to you, and is some simple expression in terms of k. Unfortunately,
since the branch’'cut now has'complex oméga), 'you'no'ldhger’get a véry Simple

expression for what you want to know, namely zg(z) is given by the expression
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x' -z x' + z

2 F (x') G (x")
2g(z) = z - %f dx'[ % o ] (1.10)
M

What you really would like to know is the quantity Fa in this expression and
that is what normally is determined from the imaginary part of g. But unfor-
tunately, z itself is now complex so you get really three contributions to

Im g, of which only one is the thing you want to know. But then by discussing
this in some detail, you can show that the other two parts are unimportant at
least for high pion energy. So we then are reduced essentially to the result
of Chew and Low and that, of course, is a happy solution. You have to calcu-
late the dispersion integral, Eq. 1.10, the imaginary part of which is just
what I got from unitarity, while the real part is the one which gives you the
position of the resonance.

Now looking at this expression, the Fa’ from all the complicated argument
which I have told you, behaves about as k (the momentum) at large momenta, so
that the integral in Eq. 1.10 will diverge linearly with momentum. Thus you
see that indeed the high momenta give you the main contribution. Because this
is so, the main contribution comes from those values of x' where I know the
Fa very well - it's the Chew-Low value. Then the integral itself will be
close to what Chew and Low give. The result then is g, for which I get just

the same thing as Chew and Low, namely

g @ =1 -wr -1 [Aakw?’vz(k)u_z + u’r, (1.11)
where r is what Chew and Low call the effective range. Now the imaginary
part in Eq. 1.11 is slightly modified for the reasons I mentioned, but the real
part is much the same as Chew and Low obtained and therefore, it should go to
zero just at the same point where Chew and Low go to zero, namely at the

resonance energy. Therefore, r should be just about one over the resonance

energy. The imaginary part hasla correction which is related to Il and is not
very important. I started from going along the direction of real k, but now,
by using the magic of complex variables, I can transform all this to an inte-
gral along real values of the energy, real values of omega, and then I am
essentially back to where I started from with a slight correction.

So if you now want to calculate the behaviour of pions in nuclear matter,
you assume the self-energy Il as known. From that you calculate g, g gives you
h, and h gives you f, the scattered amplitude, and this in turn gives you the
II, that is the self-energy, and then you iterate until you get self-consis-—

is

tency. The final formula for the (3,3) scattered amplitude f3
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22 sz e (k)
£ =cC

3 .
7 - - 3 e (1.12)
3 k u2 w(l wrl) 1[ ]

where kw is the value of the momentum which corresponds to a given energy
omega,[ ] is the square bracket of Eq. 1.11, Ck is a number, and v(k) I
haven't told you. It is a cut-off factor which was introduced by Chew and Low
in order to cut off the divergence of the integrals.

Now, this is all well and good, except it leaves out two important
points - one is the Pauli principle and the other is some restrictions on the
energy. I told you before that the Pauli principle shouldn't really come in,
but that applied only to the case of the intermediate states of the pion, and
it does not apply to the final state. What we have in general is that the
scattered amplitude describes a scattering in which the pion initially going
in direction g encounters a nucleon and afterwards is scattered in another
direction, let's say Ef. When it does so, then of ccurse it gives a recoil to
the nucleon, and this recoil may bring the nucleon into a state which is
already occupied, and this would then be forbidden by the Pauli principle.
Now I no longer have the excuse that the k of the pion is high, because the
final k must be the same as the initial k or less, because the pion has lost
some energy. So, therefore, I do have to take into account the Pauli princi-
ple for the states of the same energy which can be reached in such a scatter-
ing by a single nucleon. (Let me for the moment consider the nucleon as
infinitely heavy).

Such problems are generally done by the Lippman-Schwinger equation
= i 43 -
T =K+ 1fd ke 8(we - w) Klk><k [T Qkp) (1.13)

in which you start off by knowing the K-matrix which is the matrix not taking
into account the condition that you always need to have outgoing waves; i.e.

K is obtained using the real part of the dispersion relation. You want to get
the T-matrix which is the actual scattering matrix. The relation of these is
given by an integral over all directions of the pions, directions of Ef, where
you go with the T-matrix to the intermediate state and the intermediate state
must be empty, that's expressed by the operator Q(Ef), the Pauli operator, and
then you go with the K matrix to the final state. The condition for Q is that
the nucleon momentum after this first scattering must be outside the Fermi sea
so the incident nucleon momentum plus the incident pion momentum minus the
intermediate state pion momentum must be greater than the Fermi momentum. Now

it is useful to introduce the sum of the incident momenta, that is the
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incident total momentum, which I call P, and to choose P as an axis; then you

can introduce polar coordinates O, @ for Ef and the Pauli principle simply

comes down to a condition

cos@ < A (1.14)
where A is calculable from the given quantities
22 + 12 - sz
A = e (1.15)

Well, this Lippmann-Schwinger equation, Eq. 1.13, which looks rather formid-
able, can be solved very easily and we have done so. The result is given in
Eq. 1.16 in terms of the quantity A, which I just defined. The solution for
the forward scattering is just

31 - A%)
ikuk (1 + 1) (2 + A - )

T(k,k) = = K ,
] - -

4
(1.16)
1 + 3A2
* 1 2
1 - Zlkao(l + A2 =2+ )29)
The forward scattering amplitude contains the term
1 + 3 cos?a = 1 + 32 (1.17)

characteristic of P3/2 scattering, as many of you will know, where 0 means the
angle between the incident pion momentum and the incident momentum P. (Well,
the main thing I wanted to show you is that it can be done, the details are
not essential). What the Pauli principle will do is reduce the imaginary term
in the denominator; this imaginary term I will now call damping for the sake
of having a short name for it, and so the damping is not quite as big as it
would be for free pions, or for an ordinary delta resonance if it were left
alone.

Now the second thing that has to be taken into account is that the nucleon
mass is not infinite, but is in fact very finite and is still further reduced:
there is an effective mass inside the nucleus which is maybe seven tenths of
tha total nuclear mass as we know from nuclear matter theory, and so that
mass isn't all that much bigger than the pion mass. Now because of this the
energy which may be transferred to the nucleon in the scattering may be very
large, especially because there is a tendency for the pion momentum to be very
large: I mentioned in the beginning that the pion momentum inside the nucleus
is much larger than outside; the simple way to say it is that the pion is

attracted by nuclear matter and therefore has a higher momentum inside. So



