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Preface

The present volume and the conference that brought about its existence are
the latest chapter in a long tradition of conferences on various facets of Algebra
and its Applications hosted at the Athens campus of Ohio University. As with its
predecessors in 1976, 1989, and 1999, the aim of the 2005 Algebra Conference was
to bring together experts from several areas of Algebra and to provide them with
an opportunity to share their research and learn from one another. We are thankful
to all the outstanding mathematicians who accepted our invitation to participate
in the conference and who submitted their valuable work to these Proceedings.

As a reflection of the growth and diversification of the interests of the Algebra
group at Ohio University, the conferences and the proceedings volumes that followed
them have continued to grow in scope. This growth has been reflected, for example,
in the names of the conferences. Having started as Conferences on Ring Theory,
they are now called Conferences on Algebra and its Applications. Inevitably, the
topics covered in this volume reflect to some extent the interests of the editors and
their colleagues.

An important development of recent years is the founding of the Center for
Ring Theory and its Applications in the fall of 2000. The CRA has fueled algebraic
activity in the State of Ohio and promoted cooperation between algebraists at the
various campuses of Ohio University and those of Ohio State University. Most im-
portantly, the Center has promoted such activities as this latest conference. We are
much obliged to the Board of Trustees of Ohio University for following the recom-
mendations of Ohio University presidents Robert Glidden and Roderick McDavis
to provide continuing funding for CRA activities.

We wish to thank all the colleagues who served as anonymous referees; their
thorough and meticulous screening of the submitted papers was invaluable for the
publication of this volume. We also wish to express our appreciation to Mr. Ashish
Srivastava for his help in so many ways with the running of the Conference and
the publication of these Proceedings. As always, we are indebted to the staff of
the American Mathematical Society for their outstanding work. Special thanks are
due, in particular, to Ms. Christine Thivierge for her tireless efforts to see this
project to conclusion.

The Editors
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ON COUNTABLY %-CS MODULES

ADEL N. ALAHMADI, HUSAIN S. AL-HAZMI, AND
PEDRO A. GUIL ASENSIO

ABSTRACT. We study a criterion for a uniform countably £-CS module to be
(X-)quasi-injective. As a consequence, we get necessary and sufficient condi-
tions that force a direct sum of indecomposable modules to be £-CS provided
that it is countable X-CS.

1. INTRODUCTION

A module M over a ring R is called CS (or extending, see [3]) if every submodule
is essential in a direct summand of M. And it is called (countably) £-CS module
if every direct sum of (countably many) copies of M is CS. The ring R is called
right 3-CS if it ¥-CS as right R-module. Right ¥-CS rings were first studied
by Oshiro under the name of co-H-rings [11]. He proved that every right X-CS
ring is both-sided artinian and therefore, it is a direct sum of uniform right ideals.
After these results, the problem of whether a ¥-CS module is also a direct sum
of uniform submodules became a major problem for these modules. This question
was positively answered in [6, 8, 7], where it is also shown that any module M such
that M) is CS for some uncountable index set I, is actually ©-CS. This is the
best bound possible, since there exist examples of non-singular right self-injective
rings R such that ng is CS, but Rpg is neither £-CS nor a direct sum of uniform
ideals (see [3, Example 12.20 (i)]).

However, there are not known examples of countably ¥-CS modules or rings
that are a direct sum of uniform submodules but they are not 3-CS. This led
Huynh and Rizvi to ask in [9] whether a countably 3-CS ring (or module) that is
a direct sum of uniforms might be X-CS. After the results in [1] (see also [4, 5]),
this problem is equivalent to ask whether a uniform countably ¥-CS module must
be (X-)quasi-injective.

In this paper, we study necessary and sufficient conditions that force a direct
sum ®;M; of indecomposable modules to be X-CS provided that it is countably ¥-
CS. Our main result states that this is the case if and only if every M; has w,-ACC
on monomorphisms (see next section for the definition). Equivalently, if and only
if the quasi-injective hull of each M; has w;-ACC on submodules isomorphic to M;.

Throughout this paper all rings R will be associative and with identity. And
Mod-R will denote the category of right R-modules. By a module we will mean
a unital right R-module. A submodule C of a module M is said to be closed in
M if it has no proper essential extension in M. A submodule X of M is called a

2000 Mathematics Subject Classification. 16D50, 16D90, 16L30.

Key words and phrases. Quasi-injective modules, uniform modules, £-CS Modules.

The third author has been partially supported by the DGI (BFM2003-07569-C02-01, Spain)
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complement if it is maximal with respect to X N'Y = 0 for some submodule Y.
A module M is called uniform if M # 0 and any two nonzero submodules of M
intersect nontrivially. Clearly, an indecomposable module is CS if and only if it is
uniform. Given a module M, we will denote by Q(M) its quasi-injective hull.

We refer to [2], [3] and [12] for any undefined notion used in the text.

2. WHEN IS A COUNTABLY %-CS MODULE, WHICH IS A DIRECT SUM OF
UNIFORM MODULES, X-CS 7

We begin by stating a couple of results which will be used in this section.

Proposition 1. ([1], Proposition 3.5) Let {M;}icr be a family of indecomposable
modules such that M = @®;.; M; is countably X-CS. The following conditions are
equivalent:

(i) M is -CS;

(ii) Each M; is 2-CS;

(iii) Each M; is (X-)quasi-injective;

(iv) Each M; has local endomorphism ring;

(v) Each M; has ACC (DCC) on submodules isomorphic to M;.

The following key lemma was used in [7] to show that any X-CS module is a
direct sum of uniform submodules. We denote by N C. M the fact that IV is an
essential submodule of M.

Lemma 2. ([7], Lemma 2.1) Let M be a CS module and f : M — N be an
epimorphism. If there exists a submodule L C M such that L N Ker(f) = 0 and
f(L) Ce N, then Ker(f) is a direct summand of M.

Given a right R-module M, let us denote by Add[M] the full subcategory of
Mod-R whose objects are the direct summands of arbitrary direct sums of copies of
M. And we are going to say that a module Ng is R-M-generated, for some cardinal
number R, if there exists an epimorphism M® — N. Our first Lemma is an easy
consequence of Lemma 2.

Lemma 3. Let M be a countably £-CS uniform right R-module. Then every
countably M-generated submodule of Q(M) containing M belongs to Add[M].

Proof. Let L be a countably M-generated submodule of Q(M) containing M. Then
there exists an epimorphism f : ®acaMo — L with |A| = Rg and M, = M for
any o € A. Replacing if necessary f by the homomorphism g : M & (aM,) — L
induced by the inclusion v : M — L and f, we can assume that there exists an
ap € A such that f |p, = u. Thus, f |m,, is one-to-one and f(M,,) = M
is an essential submodule of L. Applying Lemma 2, we deduce that Ker(f) is
a direct summand of ®,c4M,. Hence, L is isomorphic to a direct summand of
®a€AMa- 0

Corollary 4. Let P be a projective countable ¥-CS module. Then the quasi-
injective hull of P is flat. In particular, the injective envelope of any right countably
3-CS ring is flat.

Proof. The quasi-injective envelope of P is the directed union of its finitely gener-
ated submodules. Say Q(P) = UrN;. Let us fix an N;. As Q(P) is P-generated
and N; is finitely generated, there exists an epimorphism p : L — N; + P, where L
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is a submodule of P(™, for some n. This epimorphism extends to a homomorphism
f: P* — Q(P), since Q(P) is quasi-injective. Set X = Im(f). Then X € Add[P)]
is projective by the above Lemma. This means that Q(P) is the directed union of
projective submodules and therefore, flat. O

Corollary 5. Let M = ®;c;M; be a countably ¥-CS module with each M; inde-
composable. Then M is -CS if and only if Q(M;) is Wo-M;-generated for each
1€l

Proof. Let @ € I and call N = M;. Suppose that Q(N) is No-N-generated. By
Lemma 3, Q(N) € Add[N]. So there exists a splitting epimorphism p : N(4) —
Q(N) for some index set A. Let w : Q(N) — N™) such that pow = lg().
Let £ € N be a non-zero element. Then w(z) embeds in N(®) for some finite
subset B C A. Moreover, zR is uniform since it is a submodule of N that is
indecomposable and CS. Therefore there must exist a projection 7, : N4 — N,
over some coordinate N, = N of N(4) such that 7, o w |zg is a monomorphism.
Hence 7, ow must also be a monomorphism, because zR is essential in Q(N). And,
as Q(N) is N-injective, this means that Q(N) is isomorphic to a direct summand
of N, = N. Therefore, N = Q(N). Finally, M is ¥-CS by Proposition 1. The
converse also follows from Proposition 1. O

Next, we define the notion of v-ACC on monomorphisms for a module M, where
7 is an ordinal number.

Definition 6. Let M be a module and v, an ordinal number. We will say that M
has v-ACC on monomorphisms if every directed system of proper monomorphisms
{fap: Mo — Mgla<p<s with Mo = M for every a < 4, satisfies that 6 < .

Obviously, every module M satisfies y-ACC on monomorphisms for any ordinal
v with | v |>| M |. We are now ready to state the main result of this paper. Let us
denote by wp the first infinite ordinal number and w; the first uncountable ordinal
number.

Theorem 7. Let M = ®;crM; be a direct sum of uniform modules and suppose
that M is countably 3-CS. The following conditions are equivalent:

(1) M s B-CS.

(2) M; has w1-ACC on monomorphisms for each i € I.

(3) M; satisfies wy-ACC on submodules isomorphic to M; for each i € I.

Proof. 1) = 2). This is clear since in this case each M; is quasi-injective by Propo-
sition 1 and therefore, any monomorphism M; — M; is splitted.

2) = 3) This is obvious.

3) = 1). By Proposition 1, it is enough to prove that each M; has local endo-
morphism ring. Assume on the contrary that End(M;) is not local, for some i € I,
and call N = M;. Then there exists an endomorphism f : N — N such that neither
f nor 1 — f is an isomorphism. As Ker(f) N Ker(1 — f) = 0 and N is uniform,
f or 1 — f must be a monomorphism. Replacing f by 1 — f if necessary, we may
assume that f is a monomorphism.

Let us fix, for any a < w1, My = N and foo = 1n. We are going to construct a
family of submodules {Lq }a<w, of Q(M) isomorphic to N satisfying that:

o L, C Lgforany a < f<w
e The family {M,}o<, is directed, for any v < wy.
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Let us note that if we make our construction, we are done since this contradicts
that Q(N) has w1-ACC on submodules isomorphic to N.
Let us construct the family {L,}a<w, by transfinite induction on v < wj.

(1) First, assume that v = § + 1 < w; is a successor ordinal and that we have
constructed L, for a < v satisfying the above hypotheses. As Q(N) is
quasi-injective, the monomorphism f : Ly = N — N extends to a homo-
morphism g : N — Q(N) such that go f is the inclusion of N in Q(N). And
g is a monomorphism since N is uniform. Let us call L, = Im(g). Then
L, = N. Moreover L; C L., because otherwise f would be an isomorphism.

(2) Next, assume that 0 < 4 < w; is a limit ordinal and we have defined
L, for any a < . We know that for every ordinal § < <, the family
{La}a<s is directed. Therefore, the family {Lq}a<~ is also directed. Let
L=limLy, C Q(N) be the directed union of this system. As v < wy, it is
countable, so we know by Lemma 3 that L € Add[N]. Using now the same
reasoning as in Corollary 2, we deduce that there exists a monomorphism
w : L — N. This homomorphism w extends to a monomorphism h :
N — Q(N), because Q(N) is quasi-injective and L is uniform. Let us then
call L, = Im(h). Clearly {Lq}a<~ is directed since {Lq}a<~ is directed,
L=1imL, and L C L,. Finally, L, # L, for any o < <y because otherwise
we would have that Lo, C Lot+1 € Ly = Lq.

d

Our next result shows that the endomorphism ring of a finitely generated uniform
countably ¥-CS module satisfies a restricted DCC condition on cyclic left ideals.
We do not know whether these endomorphism rings satisfy DCC on cyclic left ideals
in general. Of course, if this would be true, these endomorphism rings would be
right perfect and therefore, every finitely generated countably ¥-CS module that is
a direct sum of uniforms would be ¥-CS by Proposition 1.

Proposition 8. Let M be a uniform countably ¥-CS finitely generated module and
let S = End(M). Then every descending chain of cyclic left ideals {Sén}n<w, of
S, with ¢, a monomorphism for every n, stabilizes.

Proof. Assume on the contrary that {S¢, }n<w, is a strict descending chain of left
ideals with ¢,,, a monomorphism for each n. Then there must exist monomorphisms
fn: M — M such that ¢, = f,0...0 f for every n.

For each i < wg, set M; = M and N = ®&M;. Let uscall & : M; — N
the structural injection of M; in the direct sum. Let us define g; : M; — N by
gi =¢i —¢€iv1fiand g : N — N by g = &g;. For every ¢,j < wg with i < j,
let us set T = 1 and Oij = fj—lfj—2---fi+1fi- Then {O'ij . Mi — Mj}iSj is a
directed system of essential monomorphisms. Moreover, lim M; = N/Im(g) (see
e.g. [12,24.2])). Let 7 : @,,M; — M/Im(g) be the canonical projection. As {o;; :
M; — M;}i<; is a directed system of essential monomorphisms, we conclude that
mog;: M; — h_r)n M; is an essential monomorphism for every i € wg. In particular,
moey : My — lim M; is an essential monomorphism. Hence, m(e1(M1)) Ce lim M;
and T restricted to £1 (M) is a monomorphism. Therefore, Ker(m)Ney(M;) = 0 and
Ker() is a direct summand of N by Lemma 2. But Ker(mw) = I'm(g) by [12, 43.3].
Thus, I'm(g) is a direct summand of N. Now, since M is finitely generated, there
exists an n and an h € S such that f,fn—1...f1 = Afat1fn... f1 by [12, 43.3(3)].
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Hence, ¢, = h¢py1. And this implies that S¢, = S¢,+1. A contradiction that
proves the proposition. a

As we said before, we do not know whether this DCC condition implies that any
finitely generated uniform countably ¥-CS module has local endomorphism ring.
We finish the paper by proving that this is the case if we assume it on right ideals
instead of left ideals.

Proposition 9. Let M be a uniform right R-module and S = Endgr(M). If S has
DCC on cyclic right ideals generated by monomorphisms, then S is local.

Proof. Assume to the contrary that S is not local. Then there exists an f €
S such that neither f nor 1 — f is an isomorphism. Since M is uniform and
Ker(f) N Ker(1 — f) = 0, we have that either f or 1 — f is monomorphism. Say
that f is a monomorphism. We have the following descending chain of cyclic right
ideals generated by monomorphism: fS D f2S D ... D f"S.... By assumption,
there exists an n € wg such that f*S = f*+1S. This means there exists an h € S
such that f® = f"*1h. Let us fix an arbitrary m € M. Then f"(m) = [f"*1h](m).
This means f™(m) = f"(fh(m)). Since f™ is monomorphism we conclude that
m = fh(m). Hence m € Im(f). But m was an arbitrary element of M. Therefore
foh=1p. And, as M is uniform, this means that f must be an isomorphism, a
contradiction that finishes our proof. O

Corollary 10. Let M be an indecomposable countably 3-CS module and S =
End(M). If S has DCC on cyclic right ideals generated by monomorphisms, then
M is ¥-CS.

Proof. This is a straightforward consequence of Proposition 1 and Proposition 9.
(]

Acknowledgement. Part of these results were obtained while the third author
was visiting the Center of Ring Theory and its Applications of the Ohio University
supported by the Spanish Ministry of Education. The author would also like to
thank the hospitality of the members of this Center.
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Moduli spaces of graded representations
of finite dimensional algebras

E. Babson, B. Huisgen-Zimmermann, and R. Thomas

ABSTRACT. Let A be a basic finite dimensional algebra over an algebraically
closed field, presented as a path algebra modulo relations; further, assume
that A is graded by lengths of paths. The paper addresses the classifiability,
via moduli spaces, of classes of graded A-modules with fixed dimension d and
fixed top T. It is shown that such moduli spaces exist far more frequently
than they do for ungraded modules. In the local case (i.e., when T is simple),
the graded d-dimensional A-modules with top T" always possess a fine moduli
space which classifies these modules up to graded-isomorphism; moreover, this
moduli space is a projective variety with a distinguished affine cover that
can be constructed from quiver and relations of A. When T is not simple,
existence of a coarse moduli space for the graded d-dimensional A-modules
with top T forces these modules to be direct sums of local modules; under the
latter condition, a finite collection of isomorphism invariants of the modules
in question yields a partition into subclasses, each of which has a fine moduli
space (again projective) parametrizing the corresponding graded-isomorphism
classes.

1. Introduction

Let A be a finite dimensional algebra with radical J over an algebraically closed
field K, and fix a finite dimensional semisimple (left) A-module T together with a
positive integer d. In [4], the second author explored the existence and structure
of moduli spaces classifying, up to isomorphism, those d-dimensional (left) repre-
sentations M of A whose tops M/JM equal T under identification of isomorphic
semisimple modules. The vehicle for tackling this classification problem is a pro-
jective variety, QStassg, parametrizing the d-dimensional modules with top T'; see
Section 2.

The general goal driving such investigations is to demonstrate that, even over
a wild algebra A, major portions of the representation theory may behave tamely,

2000 Mathematics Subject Classification. Primary 16G10; Secondary 16G20, 16 W50, 14D20.

Key words and phrases. Representation, graded representation, finite dimensional algebra,
moduli space.
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being accessible to classification in a quite stringent sense. The idea of moduli
goes back to Riemann’s 1857 classification of nonsingular projective curves of fixed
genus in terms of continuous structure determining invariants; it was made precise
by Mumford in the 1960’s. In rough terms, adapted to our representation-theoretic
context, it amounts to the following: First one introduces a concept of family, which
pins down what it means that a collection of finite dimensional representations be
parametrized “continuously” by the points of a variety X. Given this prerequisite,
a fine or coarse moduli space for a class of finite dimensional representations of A
is a variety that continuously and bijectively parametrizes the isomorphism classes
of the considered representations in a fashion satisfying a certain coarse or fine
universal property. In slightly more precise language, a fine moduli space — the
crucial concept in this paper — is the parametrizing variety of a distinguished family
satisfying the postulate that any other family of representations recruited from the
given class be uniquely “induced” by the distinguished one. Existence provided,
both fine and coarse moduli spaces are unique up to canonical isomorphism due to
the pertinent universality conditions.

Here we focus on a graded basic finite dimensional algebra A and address two
problems closely related to the one mentioned at the outset: (1) That of deciding
classifiability of the graded d-dimensional left A-modules M with fixed top T, up
to graded-isomorphism; and, more restrictively, classifiability of those graded can-

didates M which have fixed radical layering S(M) = (JlM/Jl’LlM)DO. In either

case, “classifiability” stands for existence of a fine or coarse moduli space. (2) In
case existence of a moduli space is secured, the problem of determining the struc-
ture of this space and of constructing a universal family for the considered class of
representations.

Our base field K being algebraically closed, we may assume without loss of
generality that A is a path algebra modulo relations, meaning that A = KQ/I
for a quiver @ and an admissible ideal I in the path algebra K@Q. In fact, we
specialize to the situation where A is graded by lengths of paths, meaning that I
is a homogeneous ideal with respect to the natural grading of K@ through path
lengths. We will start by showing that the set of those points in the mentioned
variety QStassg, which correspond to the graded d-dimensional modules with top T
that are generated in degree zero, form a closed — and hence projective — subvariety
of (’5ta55§, denoted by Gr—@tassfip. More strongly, we will verify the following:
Suppose S = (Sp,S1,...,SL) is a sequence of semisimple modules with Sg = T,
where JL+1 = 0 and the dimensions of the S; add up to d. Then the following subset
Gr-Brass(S) of Grass] is closed: Namely, the set of those points in Gr-Grass,
which correspond to the graded modules M with S(M) = S. In alternate terms,
Gr-®rass(S) is a projective variety parametrizing the d-dimensional graded modules
generated in degree zero with radical layering S. Closedness of these subvarieties
entails, in particular, that each Gr-Gtass(S) is a union of irreducible components
of Gr—@tassg. This is the first crucial difference between the graded and ungraded
settings. Indeed, by contrast, the subvariety Grass(S) consisting of all points in
QStassg corresponding to (not necessarily graded) modules with radical layering S
fails to be closed in Gtass’ in general.

Naturally, the graded d-dimensional representations with top T" possess a fine/
coarse moduli space whenever all d-dimensional representations with top 7" do. On
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the other hand, not too surprisingly, existence of a moduli space is a far more fre-
quent event in the graded than in the ungraded situation, as a grading accounts for
increased rigidity. What is surprising is the extent of this discrepancy: For instance,
given a simple module T" with projective cover P, the d-dimensional top-7" modules
have a fine (equivalently, a coarse) moduli space classifying them up to isomorphism
precisely when every submodule C' of JP having codimension d in P is invariant
under endomorphisms of P; the latter requirement imposes strong restrictions on
the underlying triple (A, T, d); see [4, Corollary 4.5]. However, when one narrows
one’s view to graded representations under graded-isomorphism, existence of a fine
moduli space is automatic for a simple top T

THEOREM A. If A is path-length-graded and T a simple left A-module, then,
for any positive integer d, the graded d-dimensional A-modules with top T possess a
fine moduli space, classifying their graded-isomorphism classes. This moduli space
equals Gr-Grassy .

Calling a module local if it has a simple top, we will more generally prove the
following:

THEOREM B. Suppose that A is path-length-graded, T € A-mod any semisimple
A-module, and S a sequence of semisimple A-modules as above. Moreover, let C(T)
(resp. C(S)) be the class of all graded d-dimensional A-modules with top T (resp.
with radical layering S). Then the following are true:

o If there is a coarse moduli space classifying the graded-isomorphism classes
in C(T) (resp. C(S)), then every object in C(T) (resp. C(S)) is a direct sum of local
modules.

e Conversely, if C(T) (resp. C(S)) consists of direct sums of local modules, then
C(T) (resp. C(S)) can be partitioned into finitely many subclasses, each of which has
a fine moduli space.

All moduli spaces arising in the latter case are projective.

In parallel with the ungraded situation, each of the varieties Gr—@twssg pos-
sesses a distinguished affine cover, accessible from quiver and relations of A, which
provides the key to analyses of concrete examples.

This leaves the question of which projective varieties occur among the irre-
ducible components of fine moduli spaces for graded modules with fixed dimension
and top. We use examples of Hille in [2], which are in turn based on a construction
technique introduced by the second author in [3], to show that every irreducible
projective variety arises as an irreducible component of such a space.

Our approach to moduli problems for representations is fundamentally different
from that of King in [7], where the targeted modules are those that are semistable
with respect to a given additive function 8 : Ko(A-mod) — R. King’s definition of
semistability allows for the adaptation of techniques developed by Mumford with
the aim of classifying vector bundles. On one hand, in King’s approach (coarse)
moduli spaces for ©-semistable representations are guaranteed to exist. On the
other hand, in general these classes of modules are hard to assess in size and to
describe in more manageable terms, while their classification through moduli spaces
is a priori only up to an equivalence relation considerably coarser than isomorphism.

Concerning strategy: Evidently, every local graded module is generated in a
single degree, which, for purposes of classification, we may assume to be zero. As
for the general case, we will show that classifiability up to graded-isomorphism
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(through a moduli space) of the graded d-dimensional modules with fixed top T,
generated in mixed degrees, forces these graded objects to be direct sums of local
graded submodules. We are thus led back to a situation in which restriction to
graded modules generated in degree zero is harmless. The proof of this reduction
step requires an extra layer of technicalities likely to obscure the underlying ideas;
we will therefore defer it to an appendix (Section 6). In Sections 2-5, we will only
consider graded modules generated in degree zero.

In Section 2, we will provide prerequisites; in particular, we will introduce the
varieties Gr-®rass, and Gr-Btass(S) and verify their projectivity. In Section 3, we
will prepare for proofs of the main results by introducing the mentioned affine cover
of the variety Gr—@tassg and by constructing a pivotal family of graded modules
with top T'; this family will turn out to be the universal one (see Section 2 for a
definition) in case a fine moduli space exists. Section 4 contains proofs of upgraded
versions of Theorems A and B, the latter restricted to graded modules generated in
degree zero. Section 5 is devoted to examples. The appendix, finally, will remove
the restriction concerning degree-zero generating sets from the results for nonlocal
modules.

2. Further terminology and Background

We will be fairly complete in setting up our conventions, even fairly standard
ones, for the convenience of the reader whose expertise lies at the periphery of the
subject.

Let A be a basic finite dimensional algebra over an algebraically closed field
K. Without loss of generality, we assume A to be a path algebra modulo relations,
that is, A = KQ/I for a quiver @ and an admissible ideal I in the path algebra
KQ.

Gradings. Throughout, we suppose A to be graded in terms of path lengths,
meaning that I is homogeneous with respect to the length-grading of K Q. Denoting
by J the Jacobson radical of A, we let L be maximal with J* # 0. Then the grading
of A takes on the form A = @,.,<; A, where A; = J!/J'*1 is the homogeneous
component of degree [ of A. The vertices ey, ...,e, of Q will be identified with
the primitive idempotents of A corresponding to the paths of length zero, that
is, the e; will also stand for the I-residues of the paths of length 0 in Ag. The
factor modules S; = Ae;/Je; then form an irredundant set of representatives for
the simple left A-modules; unless we explicitly state otherwise, we consider the
S; — and hence all semisimple modules — as homogeneous modules in degree 0,
systematically identifying isomorphic semisimple modules. Clearly, the grading of
any indecomposable projective module Ae; inherited from that of A yields a graded
local module which is generated in degree zero. Whenever P = @, ., ,,(Ae;)", we
let P = @y<,<;, P be the resulting decomposition into homogeneous subspaces.
Given two graded modules M, M’, we call a morphism f : M — M’ homogeneous of
degree s in case f(M;) C Mj_  for all [; the attribute “homogeneous” by itself stands
for “homogeneous of degree zero”. Whenever there is an isomorphism M — M’
which is homogeneous of some degree s, we call M and M’ graded-isomorphic; so,
in particular, two graded modules generated in degree zero are graded-isomorphic
if and only if they are isomorphic by way of a homogeneous map.

Paths in A and top elements of modules. We will observe the following conven-
tions: The product pq of two paths p and ¢ in K@ stands for “first ¢, then p”; in



