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Preface to the Second Edition

THis Book aims to present modern algebra from the beginning, for under-
graduates or graduates, by covering the standard materials in a way which
combines the use of algebraic manipulations and axiomatic methods with the
striking general ideas which have developed in recent decades.

The “modern” approach to algebra rests on the use of axioms for groups,
rings; fields, lattices, and vector spaces as a means to understanding algebraic
manipulations. This modern approach became generally accepted on the
graduate level shortly after the publication in 1930 and 1931 of Van der
Waerden’s now classic Moderne Algebra.! In the 1940s, other books, includ-
ing our own A Survey of Modem Algebra,' popularized this approach on the
undergraduate level, emphasizing the central role of vector spaces. In the
succeeding decades, algebra has continued to develop vigorously, both in the
United States and, much influenced by Bourbaki, in France. This develop-
ment has to some extent reshaped the conceptual organization of mathemat-
ics, for example, in the emphasis on the (homo-) morphisms of each type of
algebra, and the consequent use of categories and universal constructions.

Our book is organized around this continued development. For example,
the axioms used to describe a vector space with scalars from a field apply
also when the scalars are elements of a ring, and thus define a module over
that ring. This notion of a module now plays a central role in many parts of
algebra and in its applications to topology and differential geometry. Con-
structions on algebraic systems are often described as functors on the
appropriate categories: an adjoint functor, when present, is of central utility.
Fortunately, these adjoints can be described in elementary terms as univer-
sals: The construction of a new algebraic object which solves a specific
problem in a universal way, so that every other solution is obtained from this
one by a unique morphism.

Our presentation starts with integers, groups, rings, fields, modules, and
vector spaces. The integers are constructed from the natural numbers so as
to provide the universal enlargement of the natural numbers which will
allow subtraction. For groups, the projection of a group onto its quotient
group provides the universal homomorphism which “kills” the corresponding
subgroup. This one property provides all the necessary information about the
behavior of quotient groups. The extension of a ring to a ring of polynomials
in an indeterminate x is the universal way of adding one new element to a

!See the Bibliography.



vi PREFACE TO THE SECOND EDITION

ring. The construction of a vector space V with a given basis X is universal in
the sense that every linear transformation on V is completely determined by
its values on the basis X.

The next chapters treat linear algebra, including tensor products. Proofs of
the existence of eigenvalues and eigenvectors for linear transformations use
the special properties of the real and complex fields, as developed in Chapter
VIIL. Up to this point the chapters follow in a natural sequence; thereafter
the chapters are largely independent (a second chapter on group theory,
lattice theory, categories, and multilinear algebra). This is intended to allow
considerable latitude in the development of a course based on selected
topics.

The treatment of many of these topics in the first edition has been
simplified—and clarified—in this second edition. The material on universal
constructions, formerly introduced at the end of the first chapter, has now
been assembled in Chapter IV, at a point where there are at hand many
more effective examples of these constructions. A great many points in the
exposition have been clarified, for instance in a simpler construction of the
integers, a more elementary description of polynomials, and a more direct
treatment of dual spaces. The chapter on special fields now includes power
series fields and a treatment of the p-adic numbers. There is a wholly new
chapter on Galois theory; in exchange, the chapter on affine geometry has
been dropped. New exercisés have been added ard somie old slips have been
excised.

The effective completion of any book depends on the help of many
people; it is a pleasure to acknowledge that help for this second edition. A
number of readers pointed out to us errors and possible improvements in the
published version. They include Dominique Bernaroli, J. L. Brenner, R. E.
Johnson, T. Karenakaran, E. Klemperer, Ronald Nunke, L. E. Pursell, S.
Segal, Jacques Weil, and Charles Wells. We are notably indebted to Frank
Gerrish, who thoughtfully provided us with an especially large number of
astute comments. Neal Koblitz helped with material on Chapter VIII. Kathy
Edwards, Joel Fingerman, Leo Katzenstein, Gaunce Lewis, Miguel LaPlaza,
and others examined this revision with care and attention. For typing
assistance, we are indebted to Karen McKeown and Janet Mezgolits.
Dorothy Mac Lane prepared the index. To all these—and to many others—
we express our sincere thanks and appreciation.

SAUNDERS MaC LANE
GARRETT BIRKHOFF

Dune Acres, Indiana
Cambridge, Massachusetts
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CHAPTER 1

Sets, Functions, and Integers

ALGEBRA starts as the art of manipulating sums, products, and powers of
numbers. The rules for these manipulations hold for all numbers, so the
manipulations may be carried out with letters standing for the numbers. It
then, appears that the same rules hold for various different sorts of numbers,
rational, real, or complex, and that the rules for multiplication even apply to
things such as transformations which are not numbers at all. An algebraic
system, as we will study it, is thus a set of elements of any sort on which
functions such as addition and multiplication operate, provided only that
these operations satisfy certain basic_rules. The rules for multiplication and
inverse are the axioms for a “group”, those for addition, subtraction, and
multiplication are the axioms for a “ring”, and the functions mapping one
system to another are the “morphisms”. This chapter starts with the neces-
sary ideas about sets, functions, and relations. Then the natural numbers are
used to construct the intggers and the integers modulo n, with their addition
and multiplication. This serves as an introduction to the notion of a mor-
phism from one algebraic system to another.

Many developments in algebra depend vitally upon defining the right
concept. When our presentation reaches any definition, the term being
defined is put in italics, as group, ring, field, and so on. However, terms little
used in the sequel 4s well as terminology alternative to that selected here are
put in quotation marks; thus “range” stands for codomain and “onto” for
surjective (see §2 below).

A reference such as Theorem 3 is to Theorem 3 of the current chapter,
while Theorem I1.3 is to Theorem 3 of Chapter II. In like manner, Corollary
IV.5.2 refers to Corollary 2 of Theorem 5 of Chapter IV, and Equation
(VI.11) to Equation (11) of Chapter VI. Within each Chapter, Theorems and
Propositions are numbered in a single series. More difficult exercises and
sections which may be omitted on first reading are denoted by an asterisk, *.

1. Sets

3 Intuitively, a “set” is any colléchon of elements, and a “function” is any
~ rule which assigns to each element of one set a corr&spondmg element of a
second set.

1



2 SETS, FUNCTIONS, AND INTEGERs [Ch. I

Examples of sets abound: The set of all lines in the plane, the set Q of all
rational numbers, the set C of all complex numbers, the set Z of all integers
(positive, negative, or zero). Sets with only a finite number of different
elements may be described by listing all their elements, often indicated by
writing these elements between braces. Thus the set of all even integers
between 0 and 8, inclusive, may be exhibited as {0, 2, 4, 6, 8}, while the set
of all positive divisors of 6 is the set {1, 2, 3, 6}. The order in which the
elements of a set are listed is irrelevant: {1, 3, 6, 2} = {1, 2, 3, 6}.

More formally, “x € S” stands for “x is an element of the set S” or
equivalently, “x is a member of the set S” or “x belongs to S”. Also, x & S
means that x is not an element of S. Since a set is completely determined by
giving its elements, two sets S and T are equal if and only if they have the
same elements; in symbols:

S=T & Foral]x,xESifam‘ionlyifxET. (1)

(Here the two-pointed double.arrow “«< " stands for “if and only if”".) Also, S
is a subset of T (or, is included in T) when every element of § is an element
of T, so that, if x € S, then x € T; in symbols:

SCcT «© Forallx,x€E€S=x€T.

(Here, on the right, the one-pointed double arrow “=" stands for “im-
plies”.) By this definition, S C T and T C U imply S C U, while the
equality of sets, as defined above, may be rewritten as

S=T & SCTandT CS.

A set S is empty if it has no elements. By the equality rule (1), any two

empty sets are equal. Hence, we speak of the empty set, written . It is also

called the null set or the void set; it is a subset of every set. Also, S is a

proper subset of a set U when S C U but S # & and S # U. ,
A particular subset of a given set U is often described as the set of all

those elements x in U which have a specified property. Thus the subset of

those complex numbers z such that z* = — 1 is written {z|z € C and
= — 1}, while the formulas

E={xl]x €Zandx =2y forsomey €EZ}, N = {x|x €EZandx > 0}

describe the set E of all even -integers and the set N of all nonnegative
integers, respectively. Different properties may dqscribe the same subset;
thus

{(njln€Zand0<n<1} and (n|n €Zandn®= -1}

both describe the empty set .
Next we consider the operations of intersection and union on sets. If R
and S are given sets, their intersection R N S is the set of all elements
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common to R and S:
R ﬂS={x|xERaﬁdeS},

“while "their union R U S is the set of all elements which belong either to R
or to S (or to both):

RuUS={xlx€Rorx € S}.
These definitions may be stated thus:
x€E(RNS) © x€Randx €S,

x€E(RUS) © xERor xES.

This .display correlates the operations of intersection and union with the
logical connectives “and” and “or”. The corresponding correlate of “not” is
the operation of “complement”: If S is a subset of U, the complement S’ of S
in U is the set of all those elements of U which do not belong to S:

S’={xlx € Uandx & S}.

For example, for the sets E and N above, E N N is the set of even
nonnegative integers, E U N the set of all integers except the negative odd
ones, while the complement E’ of E in Z is the set of all odd integers.

The operations of intersection, union, and complement satisfy various
“identities”, valid for arbitrary sets. A sample such identity is

RNn(SuT)=(RNnS)u(RnNT), 2)

valid for any three sets R, S, and T. (This equation states that the operation
“intersection” is distributive over the operation “union”.) To prove this
statement, consider any element x. By the definitions of N and U above,

x€[RN(SUT)] & xERandxESUT
<& x€Rand(xESorxET).
For similar reasons, s

x€[(RNS)U(RNT)] & (xERandx € S)or(xERandx ET).

Now, in view of familiar properties of “and” and “or”, the two different
statements made about x at the right of the two displays above are logically
equivalent. Hence, the two sets in question have the same elements and
therefore are equal. In other words, this proof reduces property (2) of
intersection and union to an exactly corresponding property of the logical
connectives “and” and “or”.

A similar argument gives another distributive law,

Ru(SNnT)=(RuS)n(RUT). (3)



4 ' SETS, FUNCTIONS, AND INTEGERS tCh. I

- Other algebraic properties of intersection, union, and complement will be
considered in the exercises in §3 below.

Two sets, R and S, are called disjoint when R N S = &.

Given a set U, the set P(U) of all subsets S of U is called the power set of
U; thus P(U) = {S|S C U}. For example, if U has two elements, it has four
different subsets which are the four elements of P(U). Explicitly, P({1, 2}) =
{{1, 2}, {1}, {2}, D}. Here J is the empty set (a subset of every set, as
above).

EXERCISES

1. For subsets R, S, and T of a set U, establish the following identities:
@RNS=SNR, RNnSNnT)=RnNnS)NT
GRUS=SUR, RUSUT)=(RUS)UT.

() (RNS)Y=R'US, (RuUS)Y=R"NS".
dSNnSuT)=S, Su(SnNnT)=S

Show that any one of the three conditions S C T, S N T = S, and
T = T on the sets S and T implies both of the others.

. For S c U,éhowthat SN §'=Fand S U S’ = U.

List the elements of the sets P(P({1})) and P(P(P({1}))).

Show that a set of n elements has 2" different sub:ets.

If m < n, show that a set of n elements has (n!)/(n — m)!(m!)
different subsets of m elements each, where m.= 12 - - m.

SomwCp

2. Functions

A function f on a set S to a set T assigns to each element s of § an
element f(s) € T, as indicated by the notation

s> f(s), s ES.

The element f(s) may also be written as fs or f,, without pa.renthesés; it is
the value of f at the argument s. The set S is called the domain of f, while T
is the codomain. The arrow notation

f:$S->T o S kA T
indicates that f is a function with domain S and codomain T. A function is
often called a “map” or a “transformation”.

To describe a particular function, one must specify its domain and its,
codomain, and write down its effect upon a typical (“variable”) element of
its domain. Thus the squaring function f:R — R for the set R of real numbers
may be described in any of the following ways: As the function f with
f(x) = 22 for any real number x, or as’the function (—)?, where — stands
for the argument, or as the function which sends each x € R to x%, or as the



