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Preface

Our goal in writing this Second Edition of Low-Speed Aerodynamics remains the
same, to present a comprehensive and up-to-date treatment of the subject of inviscid, incom-
pressible, and irrotational aerodynamics. It is still true that for most practical aerodynamic
and hydrodynamic problems, the classical model of a thin viscous boundary layer along
a body’s surface, surrounded by a mainly inviscid flowfield, has produced important engi-
neering results. This approach requires first the solution of the inviscid flow to obtain the
pressure field and consequently the forces such as lift and induced drag. Then, a solution
of the viscous flow in the thin boundary layer allows for the calculation of the skin friction
effects.

The First Edition provides the theory and related computational methods for the solution
of the inviscid flow problem. This material is complemented in the Second Edition with
a new Chapter 14, “The Laminar Boundary Layer,” whose goal is to provide a modern
discussion of the coupling of the inviscid outer flow with the viscous boundary layer. First,
an introduction to the classical boundary-layer theory of Prandtl is presented. The need for an
interactive approach (to replace the classical sequential one) to the coupling is discussed and
a viscous-1inviscid interaction method is presented. Examples for extending this approach,
which include transition to turbulence, are provided in the final Chapter 15.

In addition, updated versions of the computational methods are presented and several
topics are improved and updated throughout the text. For example, more coverage is given of
aerodynamic interaction problems such as multiple wings, ground effect, wall corrections,
and the presence of a free surface.

We would like to thank Turgut Sarpkaya of the Naval Postgraduate School and H. K.
Cheng of USC for their input in Chapter 14 and particularly Mark Drela of MIT who
provided a detailed description of his solution technique, which formed the basis for the
material in Sections 14.7 and 14.8. Finally, we would like to acknowledge the continuing
love and support of our wives, Hilda Katz and Selena Plotkin.

xiii



Preface to the First Edition

Our goal in writing this book is to present a comprehensive and up-to-date treat-
ment of the subject of inviscid, incompressible, and irrotational aerodynamics. Over the
last several years there has been a widespread use of computational (surface singularity)
“methods for the solution of problems of concern to the low-speed aerodynamicist and a
need has developed for a text to provide the theoretical basis for these methods as well as
to provide a smooth transition from the classical small-disturbance methods of the past to
the computational methods of the present. This book was written in response to this need.
A unique feature of this book is that the computational approach (from a single vortex el-
ement to a three-dimensional panel formulation) is interwoven throughout so that it serves
as a teaching tool in the understanding of the classical methods as well as a vehicle for the
reader to obtain solutions to complex problems that previously could not be dealt with in
the context of a textbook. The reader will be introduced to different levels of complexity in
the numerical modeling of an aerodynamic problem and will be able to assemble codes to
implement a solution.

We have purposely limited our scope to inviscid, incompressible, and irrotational aero-
dynamics so that we can present a truly comprehensive coverage of the material. The book
brings together topics currently scattered throughout the literature. It provides a detailed pre-
sentation of computational techniques for three-dimensional and unsteady flows. It includes
a systematic and detailed (including computer programs) treatment of two-dimensional
panel methods with variations in singularity type, order of singularity, Neumann or Dirich-
let boundary conditions, and velocity or potential-based approaches.

This book is divided into three main parts. In the first, Chapters 1-3, the basic theory is
developed. In the second part, Chapters 4—8, an analytical approach to the solution of the
problem is taken. Chapters 4, 5, and 8 deal with the small-disturbance version of the problem
and the classical methods of thin-airfoil theory, lifting line theory, slender wing theory, and
slender body theory. In this part exact solutions via complex variable theory and perturbation
methods for obtaining higher-order small disturbance approximations are also included.
The third part, Chapters 9-14, presents a systematic treatment of the surface singularity
distribution technique for obtaining numerical solutions for incompressible potential flows.
A general methodology for assembling a numerical solution is developed and applied to a
series of increasingly complex aerodynamic elements (two-dimensional, three-dimensional,
and unsteady problems are treated).

The book is designed to be used as a textbook for a course in low-speed aerodynamics at
either the advanced senior or first-year graduate levels. The complete text can be covered in
a one-year course and a one-quarter or one-semester course can be constructed by choosing
the topics that the instructor would like to emphasize. For example, a senior elective course
which concentrated on two-dimensional steady aerodynamics might include Chapters 1-3,
4,5,9, 11, 8, 12, and 14. A traditional graduate course which emphasized an analytical
treatment of the subject might include Chapters 1-3, 4, 5-7, 8,9, and 13 and a course which
emphasized a numerical approach (panel methods) might include Chapters 1-3 and 9-14
and a treatment of pre- and postprocessors. It has been assumed that the reader has taken

XV



xvi Preface to the First Edition

a first course in fluid mechanics and has a mathematical background which includes an
exposure to vector calculus, partial differential equations, and complex vanables.

We believe that the topics covered by this text are needed by the fluid dynamicist because
of the complex nature of the fluid dynamic equations which has led to a mainly experimental
approach for dealing with most engineering research and development programs. In a wider
sense, such an approach uses tools such as wind tunnels or large computer codes where the
engineer/user is experimenting and testing ideas with some trial and error logic in mind.
Therefore, even in the era of supercomputers and sophisticated experimental tools, there is
a need for simplified models that allow for an easy grasp of the dominant physical effects
(e.g., having a simple lifting vortex in mind, one can immediately tell that the first wing in
a tandem formation has the larger lift).

For most practical aerodynamic and hydrodynamic problems, the classical model of a thin
viscous boundary layer along a body’s surface, surrounded by a mainly inviscid flowfield,
has produced important engineering results. This approach requires first the solution of
the inviscid flow to obtain the pressure field and consequently the forces such as lift and
induced drag. Then, a solution of the viscous flow in the thin boundary layer allows for
the calculation of the skin friction effects. This methodology has been used successfully
throughout the twentieth century for most airplane and marine vessel designs. Recently, due
to developments in computer capacity and speed, the inviscid flowfield over complex and
detailed geometries (such as airplanes, cars, etc.) can be computed by this approach (panel
methods). Thus, for the near future, since these methods are the main tools of low-speed
aerodynamicists all over the world, a need exists for a clear and systematic explanation
of how and why (and for which cases) these methods work. This book is one attempt to
respond to this need.

We would like to thank graduate students Lindsey Browne and especially Steven Yon
who developed the two-dimensional panel codes in Chapter 11 and checked the integrals in
Chapter 10. Allen Plotkin would like to thank his teachers Richard Skalak, Krishnamurthy
Karamcheti, Milton Van Dyke, and Irmgard Flugge-Lotz, his parents Claire and Oscar for
their love and support, and his children Jennifer Anne and Samantha Rose and especially
his wife Selena for their love, support, and patience. Joseph Katz would like to thank his
parents Janka and Jeno, his children Shirley, Ronny, and Danny, and his wife Hilda for their
love, support, and patience. The support of the Low-Speed Aerodynamic Branch at NASA
Ames 1s acknowledged by Joseph Kaiz for their inspiration that initiated this project and
for their help during past years in the various stages of developing the methods presented
in this book.
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CHAPTER 1

Introduction and Background

The differential equations that are generally used in the solution of problems rel-
evant to low-speed aerodynamics are a simplified version of the governing equations of
fluid dynamics. Also, most engineers when faced with finding a solution to a practical aero-
dynamic problem, find themselves operating large computer codes rather than developing
simple analytical models to guide them in their analysis. For this reason, it is important to
start with a brief development of the principles upon which the general fluid dynamic equa-
tions are based. Then we will be in a position to consider the physical reasoning behind the
assumptions introduced to generate simplified versions of the equations that still correctly
model the aerodynamic phenomena being studied. It is hoped that this approach will give
the engineer the ability to appreciate both the power and the limitations of the techniques
that will be presented in this text. In this chapter we will derive the conservation of mass and
momentum balance equations and show how they are reduced to obtain the equations that
will be used in the rest of the text to model flows of interest to the low-speed aerodynamicist.

1.1 Description of Fluid Motion

The fluid being studied here is modeled as a continuum, and infinitesimally small
regions of the fluid (with a fixed mass) are called fluid elements or fluid particles. The
motion of the fluid can be described by two different methods. One adopts the particle point
of view and follows the motion of the individual particles. The other adopts the field point
of view and provides the flow variables as functions of position in space and time.

The particle point of view, which uses the approach of classical mechanics, is called the
Lagrangian method. To trace the motion of each fluid particle, it is convenient to introduce
a Cartesian coordinate system with the coordinates x, y, and z. The position of any fluid
particle P (see Fig. 1.1) is then given by

X = xp(X0, Y0, Z0, 1)
y = yp(Xo, Yo, Zo, ?) (1.1)
Z = zp(Xp, Yo, 20, £)

where (xo, Yo, Zo) 1s the position of P at some initial time ¢ = 0. (Note that the quantity
(xo, Yo, Zp) represents the vector with components xg, Vo, and z¢.) The components of the
velocity of this particle are then given by

u = dx/ot
v=dy/ot (1.2)
w = 0z/0t

and those of the acceleration by
ay = 8%x/0t°
a, = 8%y /at? (1.3)
a, = 8%z/dt*

]



2 1 / Introduction and Background

Figure 1.1 Particle trajectory lines in a steady-state flow over an airfoil as viewed from a body-fixed
coordinate system.

The Lagrangian formulation requires the evaluation of the motion of each fluid particle.
For most practical applications this abundance of information is neither necessary nor useful
and the analysis 1s cumbersome,

The field point of view, called the Eulerian method, provides the spatial distribution of
flow variables at each instant during the motion. For example, if a Cartesian coordinate
system is used, the components of the fluid velocity are given by

u=u(x,y21)
v=uv(x,y,2z1) (1.4)
w=w(x, v, 2z,1)

The Eulerian approach provides information about the fluid variables that 1s consistent
with the information supplied by most experimental techniques and that is in a form ap-
propriate for most practical applications. For these reasons the Eulerian description of fluid
motion is the most widely used.

1.2 Choice of Coordinate System

For the following chapters, when possible, primarily a Cartesian coordinate system
will be used. Other coordinate systems such as curvilinear, cylindrical, spherical, etc. will be
introduced and used if necessary, mainly to simplify the treatment of certain problems. Also,
from the kinematic point of view, a careful choice of a coordinate system can considerably
simplify the solution of a problem. As an example, consider the forward motion of an airfoil,
with a constant speed U, in a fluid that is otherwise at rest — as shown in Fig, 1.1. Here, the
origin of the coordinate system is attached to the moving airfoil and the trajectory of a fluid
particle inserted at point Pg at ¢t = 0 is shown in the figure. By following the trajectories of
several particles a more complete description of the flowfield is obtained in the figure. It is
important to observe that for a constant-velocity forward motion of the airfoil, in this frame
of reference, these trajectory lines become independent of time. That is, if various particles
are introduced at the same point in space, then they will follow the same trajectory.

Now let us examine the same flow, but from a coordinate system that is fixed relative to
the undisturbed fluid. At ¢ = 0, the airfoil was at the right side of Fig. 1.2 and as a result
of its constant-velocity forward motion (with a speed U, toward the left side of the page),
later at t = 1, it has moved to the new position indicated in the figure. A typical particle’s
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Particle trajectory
z A Airfoil position
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S

—— .I

———

Figure 1.2 Particle trajectory line for the airfoil of Fig. 1.1 as viewed from a stationary inertial frame.

trajectory line between ¢t = 0 and ¢ = #,, for this case, is shown in Fig. 1.2. The particle’s
motion now depends on time, and a new trajectory has to be established for each particle.
This simple example depicts the importance of good coordinate system selection. For
many problems where a constant velocity and a fixed geometry (with time) are present, the
use of a body-fixed frame of reference will result in a steady or time-independent flow.

1.3 Pathlines, Streak Lines, and Streamlines

Three sets of curves are normally associated with providing a pictorial description
of a fluid motion: pathlines, streak lines, and streamlines.

Pathlines: A curve describing the trajectory of a fluid element is called a pathline or a
particle path. Pathlines are obtained in the Lagrangian approach by an integration of the
equations of dynamics for each fluid particle. If the velocity field of a fluid motion is given
in the Eulerian framework by Eq. (1.4) in a body-fixed frame, the pathline for a particle at P
in Fig. 1.1 can be obtained by an integration of the velocity. For steady flows the pathlines
in the body-fixed frame become independent of time and can be drawn as in the case of
flow over the airfoil shown 1n Fig. 1.1.

Streak Lines: In many cases of experimental flow visualization, particles (e.g., dye or
smoke) are introduced into the flow at a fixed point in space. The line connecting all of these
particles is called a streak line. To construct streak lines using the Lagrangian approach,
draw a series of pathlines for particles passing through a given point in space and, at a
particular instant in time, connect the ends of these pathlines.

Streamlines: Another set of curves can be obtained (at a given time) by lines that are
parallel to the local velocity vector. To express analytically the equation of a streamline at
a certain instant of time, at any point P in the fluid, the velocity' q must be parallel to the
streamline element dl (Fig. 1.3). Therefore, on a streamline:

gxdl=0 (1.5)

If the velocity vector is q = (u, v, w), then the vector equation (Eq. (1.5)) reduces to the
following scalar equations:
wdy—vdz=10
udz-—wdx=190 (1.6)
vdx —udy=0
or in a differential equation form:
dx _dy _ 4 (1.6)

i v w

| Bold letters in this book represent vectors.
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Streamline

Figure 1.3 Description of a streamline.

In Eq. (1.64), the velocity (u, v, w)is a function of the coordinates and of time. However,
for steady flows the streamlines are independent of time and streamlines, pathlines, and
streak lines become identical, as shown in Fig. 1.1,

1.4 Forces in a Flnid

Prior to discussing the dynamics of fluid motion, the types of forces that act on a
fluid element should be identified. Here, we consider forces such as body forces per unit
mass fand surface forces resulting from the stress vector t. The body forces are independent
of any contact with the fluid, as in the case of gravitational or magnetic forces, and their
magnitude is proportional to the local mass.

To define the stress vector t at a point, consider the force F acting on a planar area S
(shown in Fig. 1.4) with n being an outward normal to S. Then

, F
*-E.“n('s')

To obtain the components of the stress vector consider the force equilibrium on an infinites-
imal tetrahedral fluid element, shown in Fig. 1.5. According to Batchelor!-! (p. 10) this
equilibrium yields the components in the x;, x;, and x; directions:

3
IE=X1:TfjHj, i=1,2,3 (17}
J':

where the subscripts 1, 2, and 3 denote the three coordinate directions. A similar treatment
of the moment equilibrium results in the symmetry of the stress vector components so that
T:j = ‘Ej;,

These stress components 1;; are shown schematically on a cubical element in Fig. 1.6.
Note that r;; acts in the x; direction on a surface whose outward normal points in the
x; direction. This indicial notation allows a simpler presentation of the equations, and the

Figure 1.4 Force F acting on a surface S,



