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INTRODUCTION

THE International Encyclopedia of Physical Chemistry and Chemical
Physics is a comprehensive and modern account of all aspects of the
domain of science between chemistry and physics, and is written
primarily for the graduate and research worker. The Editors-in-Chief,
Professor D. D. Erry, Professor J. E. Maver and Professor
F. C. Tompkins, have grouped the subject matter in some twenty
groups (General Topics), each having its own editor. The complete
work consists of about one hundred volumes, each volume being
restricted to around two hundred pages and having a large measure of
independence. Particular importance has been given to the exposition
of the fundamental bases of each topic and to the development of the
theoretical aspects; experimental details of an essentially practical
nature are not emphasized, although the theoretical background of
techniques and procedures is fully developed.

The Encyclopedia is written throughout in English and the recom-
mendations of the International Union of Pure and Applied Chemistry
on notation and cognate matters in physical chemistry are adopted.
Abbreviations for names of journals are in accordance with The World
List of Scientific Periodicals.
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CHAPTER 1

BASIC PRINCIPLES

1.1. Introduction

A solid-liquid equilibrium is a heterogeneous equilibrium involving
the coexistence of solid and liquid phases. The solids and liquids may be
pure substances or mixtures. We shall assume isotropic media through-
out and shall ignore external force fields (gravity, centrifugal force,
electromagnetic field) as well as surface phenomena. The properties of
each phase of a heterogeneous system will then be determined by the
temperature, the pressure, and the concentrations of the various sub-
stances which constitute the phase. Should the amount of a phase be of
interest, the total mass, the total amount of substance, or the volume
must also be known.

We start with a summary (Chapter 1) of the most important thermo-
dynamic equations which we shall need. } This is followed by a discussion
of the determination of molecular weights and activity coefficients from
solid-liquid equilibria in order to give the reader easy access to these
subjects which constitute a major interest of research workers in the
modern literature (Chapter 2).

Chapter 3 is the beginning of the systematic treatment of solid-
liquid equilibria based on the classic investigations of Gibbs, van der
Waals, van Rijn van Alkemade, and Schreinemakers, and on Gibbs’s
graphical derivation of phase diagrams from Gibbs function curves or
surfaces. These elegant and powerful methods which we are trying to
present here in the modern idiom, have so far hardly appeared even in
recent textbooks.

The systematic treatment of solid-liquid equilibria is confined for
reasons of practicability to one-component systems (Chapter 3), two-
component systems (Chapter 4), and three-component systems (Chapter
5). § 2.7 and Chapter 6 are devoted to a brief description of experimental
methods.

1 For the derivation of the basic equations cf. R. Haase, Thermodynamik der Misch-
phasen, Springer-Verlag, Berlin-Gottingen—Heidelberg, 1956.
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2 SOLID-LIQUID EQUILIBRIUM

1.2. Conditions for Equilibrium

According to classical thermodynamics the conditions for the co-
existence of several phases (denoted by ’,”,...,?) with contiguous
natural boundaries are:J

T =T"=...=T¢=T, (1.2.1)
PraPla, =pbap, (1.2.2)
Be =l = ... = [f = jig, (1.2.3)

where 7' is the thermodynamic temperature, P the pressure, and yu; the
chemical potential of the molecular species ¢. Equation (3) applies to
all the molecular species capable of penetrating the relevant phase
boundaries.

If a chemical reaction can occur within a phase o the condition for
homogeneous chemical equilibrium is

; vy =0, (1.2.4)

where v; is the stoichiometric number for the molecular species 7 in the
chemical equation for the reaction (positive when the species 7 appears
on the right-hand side of the equation and negative when it is on the
left). The condition for the heterogeneous chemical equilibrium is found
from the combination of eqns. (3) and (4).

When, for example, sodium chloride in the crystalline state (phase ’)
coexists with an aqueous solution (phase ), eqn. (3) becomes:

Hxact = Hxact -
According to eqn. (4)
u;mm = ugw + uél_ (dissociation equilibrium).
Combination of these two equations gives
PNac1 = u;ra»f +#;,;1— (heterogeneous chemical equilibrium).

The quantity uy,o can be regarded either as the chemical potential of
the molecular species NaCl (undissociated sodium chloride) in the
solution or as the chemical potential of the “‘component” NaCl. Only

1 A discussion of semi-permeable walls and osmotic equilibria is excluded.



BASIC PRINCIPLES 3

the latter interpretation makes sense in the case of complete dissocia-
tion.

It is often convenient to describe a system by the number of com-
ponents in it rather than by the number of molecular species. This
results in a reduction in the number of independent equilibrium con-
ditions. The number of molecular species N* is related to the number
of components N by

N = N*—B, (1.2.5)

where B is the number of independent relations between the tempera-
ture, the pressure, and the concentrations of the substances involved.
These relations may involve, for example, the existence of chemical
equilibria or electrical neutrality in mixtures containing ions.

Taking an aqueous sodium chloride solution as an example, we neglect
the dissociation of water and thus have four kinds of particles: H30,
NaCl, Na+, Cl—. The dissociation equilibrium

NaCl = Nat++Cl—

and the condition of electrical neutrality

CNa+ = Cor-
(c; = molarity of species 7) give two independent relations between the
concentrations, i.e. B = 2. According to eqn. (5) we therefore have two
components (N =2, binary system). We shall obviously choose water
and sodium chloride as the components of the liquid phase.

We thus have, in the component representation, N equilibrium con-
ditions instead of N* equations of type (3). u; now denotes the chemical
potential of component ¢, and eqn. (4) no longer appears explicitly.

Systems with 1, 2, 3, 4, etc., components are called one-component
systems, binary, ternary, quaternary, etc. systems.

In order to represent heterogeneous equilibria graphically, it is con-
venient to start with the molar Gibbs function} G¢ of a phase «. Ignoring
for the moment the phase index a, we denote the (stoichiometric) mole
fraction of component ¢ in the relevant phase by x; and use the identity

N
Ya=1 (1.2.6)
i=1

{Let us denote any extensive property by Z. Then, by definition, the molar quantity
is

Z = Z|n,

where n is the total amount of substance in the phase considered.
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to eliminate xy, the mole fraction of component N, as a dependent
quantity :

_ N
G = G(T, P, 21, x3, . . ., Ny —1) = Z Tili, (1.2.7)
i=1
G -
<6_> = -3, (1.2.8)
aT P,z;
G
<0—) =V, (1.2.9)
opP T,z
a@d . 5 s
(—) =p—un (1,5 =1,2,..., N=1;1 # j). (1.2.10)
axi T,P,:Cj
S is the molar entropy, V the molar volume of the phase.
From eqns. (6), (7), and (10) it follows that
_ N-1 oG
G- Z Xj <~—> = UN. (1.2.11)
i=1 0%i)ip,p,a,

The N equilibrium conditions for two coexisting phases (denoted by
’ a,nd II)

W=y (G=12...,N), (1.2.12)

which arise from eqn. (3), can be formulated by means of eqns. (10) and

(11) as follows:
<aG> - <i> (i=12...,N-1), (1.2.13)

axi (}.”L‘i

N-1 Y\’ N-1 5G\"
G-y a <§> =G"=Y (ﬁ’> . (1.2.14)
i=1

0x; i=1 0x;

We shall see later that the equilibrium conditions in this form have a
simple geometric significance in relation to the function G(x1, zs, . .
xn -1), T = const., P = const.

In the case of one-component systems, the relation

G =G (1.2.15)

replaces eqns. (13) and (14) and the molar Gibbs function G is identical
with the chemical potential u.
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The general relation between the Gibbs function G, the enthalpy H,
and the entropy S of any phase is given by

G = H-TS. (1.2.16)
We therefore have

G=H-TS (1.2.17)
and Ui = Hi-—TSi, (1.2.18)

where H is the molar enthalpy, and H; and S; are the partial molar
enthalpy and partial molar entropy of component . Equations (15) and
(17) give, for a two-phase equilibrium in a one-component system,

A -7 =718 -9). (1.2.19)

For a two-phase equilibrium in a multicomponent system eqns. (12)
and (18) give
H;-H; = T(S; —8;). (1.2.20)

1.3. Phase Rule

The simplest way to deduce Gibbs’s phase rule is to start from the
concept of components introduced in § 1.2. The equilibrium state of a
heterogeneous system can then be defined by the temperature 7', the
pressure P, and ¢(IN —1) independent composition variables (e.g.
stoichiometric mole fractions) where ¢ is the number of phases and N
the number of components. There will be N (¢ —1) equations of type
(1.2.3) connecting the ¢(N — 1) + 2 intensive variables of state. Further-
more, there may be other conditions such as, for instance, the require-
ment that a certain selected phase shall coexist with another phase not
included in the discussion; or that, for a two-component system, only
states of the same composition (azeotropic mixtures) are to be discussed.
If the number of these additional equilibrium conditions is B’ there will
be a total of

N(p—-1)+B’

independent equations connecting the ¢(N — 1) + 2 variables. The num-
ber of “degrees of freedom™, i.e. the number of independent intensive
variables is called the variance v of the system. It is represented by:

v=N+2—-¢—B. (1.3.1)

Usually there are no additional conditions, i.e. B’ = 0, and we obtain
the common expression of Gibbs’s phase rule:

v=N+2—¢. (1.3.2)
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However, problems involving azeotropic points, critical points, ete.,
require the application of the general eqn. (1).

Equation (1) or (2) can also be used when some components do not
occur in certain phases, e.g. the binary two-phase system NaCl (solid) +
aqueous solution of NaCl where the component H O is absent from the
solid phase. The number of concentrations and the number of equili-
brium conditions of type (1.2.3) are then correspondingly reduced.

Equilibria are called :

invariant when v=0 (¢ =DN+2),
univariant when v=1 (¢ =N+1),
bivariant when v=2 (¢ =N),

multivariant when » > 2 (¢ > N).

The relations in parentheses assume the validity of eqn. (2), i.e. B” = 0.

Many solid-liquid equilibria which are investigated are systems con-
sisting of solid and liquid phases in open containers and thus in contact
with air at atmospheric pressure. If the air is either insoluble or practi-
cally insoluble in the condensed phases such a heterogeneous system
can be treated as an isobaric condensed system without a vapour phase.
The air is regarded simply as a piston which exerts atmospheric pressure
on the condensed phases. When applying the phase rule (1) or (2), it
must be remembered that there is no gas phase, that the constituents of
the air are not components of the system, and that pressure is no longer
a degree of freedom. Thus the ice point (equilibrium of ice +liquid
water at atmospheric pressure, the water being saturated with air) is a
fixed point (invariant point) in the same way as the triple point of water
(equilibrium of ice +liquid water + water vapour, air being excluded).
The influence of pressure on the equilibrium between condensed phases
is small. For the above two fixed points for water we have (K = kelvin):

Ice point: 0°C or 273-15K (1 atm = 760 torr)
Triple point: 0-01°C or 273-16K  (4-579 torr).

Thus when we later fail to specify the pressure in isobaric equilibrium
diagrams it can be assumed that the pressure is about 1 atm.

1.4. Stability Conditions and Critical Phenomena

Conditions for stability may be described with the aid of the molar
Gibbs function G of the phase under consideration, a process similar to
that applied to equilibrium conditions at the end of § 1.2. G is regarded
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as a function of temperature 7', pressure P, and mole fractions zi, xs,
..., Zy —1. Both absolute stability and metastability are here regarded
as “stability’’; it is thus necessary to define the conditions for which
the phase is not absolutely unstable, i.e. not unstable with respect to
arbitrarily near neighbouring states. Ignoring, for the moment, stability
limits and critical phases, we can formulate the stability conditions in
terms of the sign of the second differential coefficients of the molar
Gibbs function with respect to its associated variables 7', P, zi, 2,

e oy IN—1-
207 d
0% _ ey, (1.4.1)
o012 T
02@G _
= —kV <0, (1.4.2)
opr2
02G 926G 02G \2 VCy
___< ‘ =TT o, (1.4.3)
0T'2 P2 oToP i
02G 026G 902G ( 026G )2 )
— >0, — —— >0
696? (7.1‘? ox; 0x10xe
e (1.4.4)
D > 0, J
where
| %G 020G a2
ax% 6.’)315132 T axla.’vN_l
092G 026G 026G
axzaxl 6x§ T f).bgaxN —
(1.4.5)
02G 02G 2@
Oxy —10x1  Oxy —10%2 T 6%% =1i
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and V is the molar volume, Cp the molar heat capacity at constant
pressure, Oy the molar heat capacity at constant volume, and « the
compressibility.f

The inequalities (1) to (3) relate to thermal and mechanical stabilities.
The inequalities (4) relate to material stability (stability with respect
to the formation of phases of slightly different composition). They state
that the determinant D and all its principal minors are positive. We
shall show later that statements (1) to (3) have simple geometrical
meanings for the function G(7T', P) and statements (4) for the function
G(xl, X2y « o o3 TN 71).

The stability limit marks the boundary between regions of stable or
metastable states and unstable regions. Apart from the case of one-
component systems, in which stability limits are of no interest in con-
nection with solid-liquid equilibria, the general equation for the
stability limit is

D = 0. (1.4.6)

In binary systems (N = 2) the relation
— =0 (1.4.7)

therefore represents the equation for the stability-limit curve.

A critical phase occurs by the merging of two coexisting phases. It
occurs at the stability limit. It thus lies on a coexistence curve as well
as on a stability-limit curve. It is therefore definable by two independent
equations. According to the generalized phase rule (1.3.1) with B’ = 2
and ¢ = 1, there are, therefore, N —1 degrees of freedom. Accordingly,
one-component systems have a critical point (v = 0), binary systems
a critical curve (v = 1), ternary systems a critical surface (v = 2),
etc. If we again exclude one-component systems, the two equations
which characterize a critical phase are:§

D=0, D =0, (1.4.8)

1 Equation (3) involves the relation
Cp—Cy = B2TV|k,
where f is the thermal expansivity.
§ The general equations for critical phases (including one-component systems) are
given in R. Haase, Thermodynamik der Mischphasen, Springer-Verlag, Berlin-Gottingen—

Heidelberg, 1956, p. 177. Cf. also J. S. Rowlinson, Liquids and Ligquid Mixtures, Butter-
worths, London, 1959.



