st fiEesre

Managing the Software Process

AEXEHR

= opignTELS - BEK

i hEem

B - S - 5X#3E [Watts S. Humphrey]

W XFH MR

() #i8=F 158 5
maEE N
AP ERMTRERES FREMMYNEE, B¥IRGTEALEZHEH. N
R A RS PR 5 AR o Gk A3 A0 o R B A 72
SRR — B, 1A V28— R AT A O AR A A SRR T P O R I AE 4
APIEFE X% A IR T A AR, A REM SRR A
H.

Managing the Software Process

Watts S. Humphrey

Copyright © 1989 by Addison-Wesley

Original English language edition published by Addison-Wesley.

All right reserved.

No part of the contents of this book may be reproduced or transmitted in any
form or by any means without the written permission of the publisher. For sale in
the People’s Republic of China Only.

ABHEDME Addison Wesley IZAUEE X F HARH HIRA (T, REHRE S
EIFR, NEUERAXERISHZESEHETAERS .

IEERTREREEENSFEIZS: EF 01-2002-3161 5

RRARERR . BHEDL5.
FHHEWEFEXFHRALH B AIRE, TREETF[HE.

A AR R

[35] FLZk + S « UBE3E

Jue 4R

RN (ERUEHRRFSHRE, 4 100084)
http://www.tup.tsinghua.edu.cn

TS ATRENR

Bt s BE A RRAT B

787x960 1/16 EPak: 33.25 RO 1
2002 4 8 AS 1 [2002 4 8 A% 1 IRENRI
ISBN 7-302-05758-3/TP * 3405

00015000

E #r: 59.00 Jt
AERAEFEARKEINE X EEXEZITHE.

B
H.‘
RS

J=
SRR

IS H S HMD

H R 3 B

1984 £, XEEFHREFAE -BEXZFRILKHGT
2 BF 97 BT (Software Engineering Institute, fi % SEI). SEI T 1986
5 FF 4R 0 9T 8K 14 i 7R BB 0 B B B 5 &Y (Capacity Maturity Model,
CMM), 1991 (EIER#EH T CMM 1.0 &K, 1993 F#H i CMM 1.1
MR . M JG , SEI 3& 58 Bk T BE 77 Bk ¥ B AR &Y £ Bl (Capability Maturity
Model Integration, f&# CMMI). HHEl, CMM2.0 lREZL#H H .

CMM H Rt ARERZKE, £ SR EEXMMXABET
JFENR, RABERRHLAFAKGTRERRKTNEES SR
X, HBRAKA I EXENF L. CMM HETRREFRKHF X
REO—FEBR, —FREREKAIERINEZR. ENKRHFTL
MEBREBHRT —ARENER, EHRAIERIBREHNFEAL
A

SEI + LEHNHARALIEFNRE, BREAEH SEIZEHAR LT
EREEEFXFEFEESMN SEI M4 TEMNMLP (SEI Series In

Software Engineering) .

AMBRERFLELYOES S, BEESKGEHKFE, &
EHENFIAZENFEELERFUHRAELFAERER, 2E5#ETXE
AH, sHEOMBEHR, XEABPRXRRNFBRA LR, N
B, AWHEKR, EERSEARERALEIRRKAFTE
BEAHENESE.

-/

o B R B AL, M —FRET LA,
—F B § &

R R AR, ETBRE F L.
—R¥% S. R$E

BUTIE¥MRBEIRGFREREEORN, £F2T
HRAARAR. ENKEFRIEGE XK, RMNHRZE
SHR, FERBFRIEFEHFBRANTHEORMN. AEERE,
KUEFROLSGRFRE, 2PHERERS, 6l NSt
o EERE. MM ERRMNAERR, HHEEFR, X8
R A EB

BERKHGIEMAREERE HRARENNSE, KX
AR EHEXKGELIERAR, BXRMNAE -EFMnE, —
AW BEEL, EXHMAFELZTHERBTER. ARHEREH
e BEHAiR. GERKGARARINTEZ —ERAEXAR
ERANZMER, MENNAGEERERTERFOLERT
R E, BEKGARBERZBESNONK. A BHEHBRXE
6] % 0 F 1) A -

1. BNMNHATWHKGELIELTHAERKFELE?
2. IR A A RSt T R ?
3. MEBE FFaR?

AEBRMTFAE -BEXZRFILEFAFT -1 EXEZE
FHEMTHARR. THHAANBERNRIAETEEFSROKG
HNEEMAES. FLEH, FRERAEERRLOTERE
ERATNEMAKRGEAANTFH. FBERFERTRABON F X
HEAIRT DPEERNRARNEHEEE. BRFHOEANEERMN
BHEIEREEMEALARVWMAX. A EMERNETHIZERME

cive SEIRHIRERE FHFK

AR FF RO AR VA R St I HE B R A K BR, T dF R Al 3R
H—EFEMBRTE, XE¥IJAERREMFEIRE &
HZEMXHAHM. KETRE - IFOHAK, REFHOLR
MEEHSMHE™E. FPERBROER, DLAMHIRUR, —
HEHHNEMTESARSE LK FEA RO RN N E6. X &R
WAHEIMBE KRG TEIEART DB IRER.

A BEIPAFAEHE

BRHETFROBER -AMABRANT XKLL #1820 HIL
MAAUFIRE —EPRF, HXFE R R 5t L%
REBRKER. i—. WIT LU ARARMBENNEMA, H
BEFRKHOBRDANEREHT . ARBIHMETHRRTAHARR
ZHEBR, KEFTROAREEET K. 4K, KBEMOHE
FERLZHANBRATHE. KAETFENERBECLBEH TRMNE
HEERNBAABKGES, STORENSHUNOKRGELIEE
B

EMEAALEXHENKREATAEHRE, BEHTERAD
MBE. FXEMAEMRL XEFTEINMIARRBE+2HHE
XRXE, MRARARABMINEUALRS, ERKRET EM
7.

AT FRE 2

EEMEKHEARAY, AT HBEBREENEER. RARFH
AARZEXRREENE . BHEFRARKFPBRE. 2RBF
B, FRHE-ATHKTRAEBK.

BMNBRAEBRKERFAAZE, T—F Mt 2amk? W
REMNABEAAANREES, FAAAMNAE, RHEEX
BRUMGEBHEASKEDE, FRAGE—HAE. RIHK
HARCLARE, HERRBFNEZLUTE 1444, #
BEHEFRSE, FRERTEMLES.

EBEAFRBIXERMNMKAAR P, RILEEKILHE
ERBRAATHE. BFHRENTHEESHLE, TRA

HUPLEEE -FF v

MESPEERMUKREOB TR BEESLTRB K. FIEXLE
MR EEHENER, TURRFOABEERTIIERN.
—HANARER, —ROASTEREFHOLREILFA T K
—WHITAE.

BRI FF 5 RIHHE

AMBEEAL, IMNEKAEGTFETERABEOKRFEANTHEE
FRH. EHEN, RERFEEXRMEMNMER RN T
B, EAAFHIBEERBREZRAN. REMKKIE, AFR
FATHBHARBACEBRHEREMETR T HBFE L
oA, EEEFA b, —EPEHKMGAR — BEE G
HYBREEEME, IEHLANZTHRREIANREFOANL,
B R A AT B R M FF R AL TH I E O 2R K AR KA R R R R
B. “BEEFATE” FENAAEHRSENTMRRKFZEHLE
HKAZM. RER, XMEBLRFIRAEMRRKME R ENEE,
AHBARE - THERLHNBRTR, BAEMARLEX. &
ARAFAABEE, BXHKELENEREENKE AL R
P F AT D,

TIEFFEEA

A—AMER M ZEABORR, ANRERREHDN
TERAMBEATURBA BB HERERGEIN. RIS NEIR,
MmAfEK. KEKNHEBATFEAR, BREADMBE S KB E L
PEKMRWBR, SBAMNMPEEREINEREFRNTIEEE L&
B I .

B A AEEKRRAEN, BrRFEELALHREE
AR, AR EERZBRBFGROATEIME. BERE.
HERKE ., MANEAL. RZFI., URKEEENRS
EE. IS RIANMHER. EHAL. RETRRER
FEAE, BEZLERNEEZNEAXTEENWMELAN TR
A i B

DTFLTEAEEHATERERAROEREH: - E X

cvie SEIHHIENRE FHHFK

KB, BARLHADE. UAIBREENRZSE. EXLEHE
BHARSPWERZN, KERRFTRESI REFEH.

APFIEERUMHLIEEE. KOELIBREBA T RHE
WHEROKEBRRTRN —RINES, FERHELAL[ELEE
M XFEHX IR, XRAAUBNERFELRIE, BE
FHEXENER.

FHEAEEN

AHERF SABY, AHNBEZERELIESHBK 5 HMAR B
H. MHEMBMFMBFERNKFIREIEER -, X—
BECLH - HMUANKAALARBTEANSESEER.
BABIPHETAHANHERBROXBEART M. RE\EE 1
ERRHMRRBBEER, KAHRTUHE S S H e KR
Br, Mol d g Esh N T4 JF o, MG R 5 mAHXF A
NERELELENTR. flkT | ZHAR, NHELX
EBRINHBIOAE: &T 2 AR, NYERLABENRL
B WA

HERAEEMR, REAAFEABERMEXEKK, — %75 @K
WELFRFRHEINFT AN R . SEEEOXR EERR
R, AMUEEELEN ZREBRLAE, CERBERES
WE. APNEZRBGHBEEZREENRERF RN, Hlw,
EBNMBELRFILE, HARRGHEABEECEXIENRZ
ARZENBBEFPAEE, MEXRUEEINNS, REFTER
ERBEHERNRE.

EEHF, BIBINOTFLEA - IHERNER, BET
ZHWOMEZEFEE, UAREFEEANBROIRELSEFHE
B ABRSAEL 2L

FIWY KAIERRE. HRTHRHEIEEENER
EREKGISBRFEFTHRFEN, BRT ARAERIERBNS
%

FUWy WERIRNIE. BRTEIEANKFLIEE

HYAEEE -G Z evii °

B FERNES, EEDTURESEFREFFRERTTH
BEH.

BIHES CEXHLIE. ERuWfAHEFRLEE, UK
BHIBEFFHROBZANMNERETHAORES. REFRE A
HEUFHKEE, PTEEXNEIEFTB THFBNAREE
.

BIVELS CEHEMOLIE. SATERAIEKEES, #
B, EREEMD>FTEE, UEXHFREBENIENEEE
H, FEFHARBEIRINERLCETIFEFHO TR, REHE
Bl B ATIE B B Ty ik, R RS R A IE R .

BEVEHS RUNIBR RARXRTHRAIBEALNEETLS,
BRXENERABRABEBI MG ME L. £#X—KF L,
KHLBNEXZ2MABBUNIRTE, REBAREH,
BEIFREMAER K FFERHE.

BWAESREAX

AR RHFEEEHENLKZRNIMFRAEZ. BoriEHHEE
METHRABONE, TLAMEE 13T, B 19 FTME 20 =,
REBEHMEZFEA NG, XHEA LU 2480 0 5% 4 B A
ARKIEBAHLPEHR. EXBELT, BIFRBREATRE
RS ESGEMHRE, NLKFHEHFEES.

L& S bk

Managing the
Software Process

Watts S. Humphrey

SOFTWARE ENGINEERING INSTITUTE

A

\A4

ADDISON-WESLEY

Boston ¢ San Francisco * New York ¢ Toronto * Montreal
London ¢ Munich ¢ Paris ¢ Madrid

Capetown ¢ Sidney ¢ Tokyo ¢ Singapore ¢ Mexico City

— Software Engineering Institute

The SEI Series in Software Engineering

Library of Congress Cataloging-in-Publication Data
Humphrey, Watts S., 1927-
Managing the software process / by Watts S. Humphrey.
p. cm.
Includes bibliographical references and index.
ISBN 0-201-18095-2
1. Software engineering—Management. . Title.
QA76.758.H86 1989
005.1'068 —dc19 88-34453

Reprinted with corrections August 1990
Copyright © 1989 by Addison-Wesley

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form, or by any means, electronic, mech-
nical, photocopying, recording, or otherwise, without the prior consent of the
publisher. Printed in the United States of America. Published simultaneously in
Canada.

Text printed on recycled and acid-free paper.
ISBN 0201180952

282930313233 CRW 05 04 03 02

28th Printing March 2002

= Software Engineering Institute

The SEI Series in Software Engineering

Editor-In-Chief
Nico Habermania, Carnegie Mellon University

Associate Editors

Peter Freeman, University of California, Irvine
John Musa, AT&T Bell Laboratories

Edirorial Advisors

Roger Bate, Texas Instruments

Laszlo Belady, Microelectronics and Computer Technology Corporation
Barry Boehm, TRW

John Ellis, DEC Systems Research Center

Robert Goldberg, IBM Corporate Technical Institutes

Harlan D. Mills, University of Florida

William E. Riddle, Software Design and Analysis, Inc.

Wm. A. Wulf, University of Virginia

TO MY CHILDREN

Katharine, Lisa, Sarah, Watts Jr., Peter,
Erica, and Christopher

FOREWORD

The “software crisis” is dead!

“When did it die?” you might ask. Many may not have noticed, and, indeed,
we cannot pinpoint the exact moment of demise; nonetheless, it is clear that things
are different today than they were a few years ago in the realm of software
development.

This book is one of the best signs of that change that I have seen.

Although for two decades we have heard about, read about, and lived the
“software crisis” in the popular sense of a set of terrible conditions that beset us, I
am using the term “crisis” here more in its preferred dictionary sense of a decisive
point or turning point. While many of those conditions (missed budgets and
schedules, poor quality, unreasonable expectations) are still with us, we have
changed from feeling that software is some kind of totally unmanageable beast to
believing that under the right conditions we can manage it just as we have learned
to manage other problematical situations in our universe.

Watts Humphrey’s considerable experience as a software manager, and now
as a student of the development process, has given him the insight to understand
that building software is not just a monolithic process, always the same. As the
central theme of this book so clearly indicates, we can classify those differences in
what we actually observe in development organizations in a way that permits us to
see that there is a sequence of maturity levels in the software process.

Understanding that there are different stages of maturity and understanding
something of the conditions that determine where one is and where one can hope to
be is often the key to growth—to turning the corner from chaotic software devel-
opment to a more controlled and manageable process. That is the theme of this

vi Foreword

highly readable, well-grounded, and pragmatic book. It will help you move be-
yond the turning point (or crisis) of feeling overwhelmed by the task of managing
the software process to understanding what is essential in software management
and what you can do about it.

Long live the crisis!

Peter Freeman
LAGUNA BEACH, CALIFORNIA

PREFACE

If you don’t know where you’'re going, any road will do.
CHINESE PROVERB

If you don’t know where you are, a map won'’t help.
WATTS S. HUMPHREY

Software engineering can be both rewarding and disappointing. The intellectual
challenge of software is unsurpassed, but our business performance has all too
often been abysmal. There is an urgent national need to improve this performance,
and to do so we need an improvement plan and a set of priorities. Such planning
calls for a vision of our goals and a clear understanding of where we are. These are
the themes of this book.

While it may seem trivial to define the state of our current software process, it
is not. The definition task requires an evaluation standard, a measurement frame-
work, and much work. To intelligently attack our problems, we must know what
they are. One way to measure the capability of a software organization is to
observe what it does in a crisis. That is when good practices are most important,
and that is when software people often have the least guidance. This book will help
you deal with the following questions:

1. How good is my current software process?
2. What must I do to improve it?
3. Where do I start?

This book grew out of work at the Software Engineering Institute at Carnegie
Mellon University on a U.S. Air Force project. The objective was to provide
guidance to the military services in selecting capable software contractors.! The
resulting method for evaluating their strengths and weaknesses has proved valu-
able for assessing other software organizations. This book describes the techni-

'"Humphrey, W. S., and W. L. Sweet. “A method for assessing the software engineering
capability of contractors,” SEI Technical Report SEI-87-TR-23, September 1987.

viii Preface

cal and managerial topics these assessments have found most critical for im-
provement.

The book's individual topics are presented in relation to the basic principles
of software process management. The approach is to provide a framework and
some techniques for evaluating and improving the process of doing software rather
than presenting a specific set of solutions. It is like the distinction between learning
a story and learning to read. The software field is so new that many new tools and
methods will surely be developed. The techniques outlined in these pages, how-
ever, are grounded in the durable principles that have fueled several centuries of
scientific and engineering advancement. These principles provide a powerful con-
ceptual framework for learning about and improving the software engineering
process.

Individuals, Teams, and Armies

The history of software development is one of increasing scale. Initially a few
individuals could hand craft small programs; the work soon grew beyond them.
Teams of one or two dozen professionals were then used, but success was mixed.
While many organizations have solved these small-system problems, the scale of
our work continues to grow. Today large projects require the coordinated work of
many teams. Complexity is outpacing our ability to solve problems intuitively as
they appear. What is required is a more structured approach to software process
management.

In addition to working with very large projects, however, we have found that
the same methods are effective for smaller groups. In fact, in simplified form, they
are even helpful for individual programmers. That, of course, is the key. If our
methods do not serve the individual professionals, they will not endure.

People and the Software Process

Talented people are the most important element in any software organization. The
crucial initial step is thus to get the best people available. The better and more
experienced they are, the better the chance of producing first-class results.2
Once you have the best people you can get, however, what next? If everyone
wrote in different programming languages, used special conventions, or didn’t co-
ordinate their design and code changes with their peers, the results would be chaos.
Successful software organizations have learned that even the best professionals
need a structured and disciplined environment in which to do cooperative work.
Software organizations that do not establish these disciplines condemn their

2Boehm, B. W. Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall, 1981.

