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PREFACE

The fifth International School of Mathematical Physics was
held at the Ettore Majorana Centro della Culture Scientifica,
Erice, Sicily, 2 to 14 July 1983. The present volume collects
lecture notes on the session which was devoted to'Regular and
Chaotic Motions in Dynamical Systems.

The School was a NATO Advanced Study Institute sponsored by
the Italian Ministry of Public Education, the Italian Ministry of
Scientific and Technological Research and the Regional Sicilian
Government.

Many of the fundamental problems of this subject go back to
Poincaré and have been recognized in recent years as being of
basic importance in a variety of physical contexts: stability of
orbits in accelerators, and in plasma and galactic dynamics,
occurrence of chaotic motions in the excitations of solids, etc.
This period of intense interest on the part of physicists followed
nearly a half a century of neglect in which research in the subject
was almost entirely carried out by mathematicians. It is an in-
dication of the difficulty of some of the problems involved that
even after a century we do not have anything like a satisfactory
solution.

The lectures at the school offered a survey of the present
state of the theory of dynamical systems with emphasis on the
fundamental mathematical problems involved. We hope that the
present volume of proceedings will be useful to a wide circle of
readers who may wish to study the fundamentals and go on to
research in the subject. With this in mind we have included a
selected bibliography of books and reviews which the participants
found helpful as well as a brief bibliography for four seminars
which were held in addition to the main lecture series.

There were sixty-one participants from sixteen countries.

G. Velo and
A.S. Wightman
Directors of the School
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REGULAR AND CHAOTIC MOTIONS IN DYNAMICAL SYSTEMS

INTRODUCTION TO THE PROBLEMS

A.S. Wightman

Departments of Mathematics and Physics
Princeton University
Princeton, N.J. 08544 USA

The purpose of this introduction is twofold; first, to
sketch the origin of some of the problems that will be discussed
in detail later, and, second, to introduce some of the concepts
which will be used. In a subject like analytical mechanics, with
such a long history and such hard problems, a little sense of
history is both enlightening and consoling.

A dynamical system is loosely specified as a system with a
state at time t given by a point x(t) lying in a phase space, M,
and a law of evolution given by an ordinary differential equation

(= ODE)

(6 = vx(D) €»

Here v 1is a vector field on the phase space M. M is customarily
assumed to be a differentiable manifold such as an open set in
n-dimensional Euclidean space. Alternatively, one can consider
the dynamical system specified by its set of possible histories,
the set of mappings, t = x(t), of some time interval a < t < b
into the phase space satisfying the ODE (1). When -« < t < o |
the solutions are said to define a flow; when 0 < t < » a semi-
flow.

A discrete dynamical system is one in which the time takes
integer values. Then the dynamics is given by the iterates of a
mapping of the phase space M into itself. If t runs over all
the integers, Z , one sometimes speaks of a cascade; if over the
positive integers, Z,, of a semi-cascade. Although the extension
of these definitions to infinite dimensional M is of obvious
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physical interest (fluid dynamics!), in what follows, for lack of
time, attention will be mainly confined to the finite dimensional

case.

Poincaré's Bequest

The analysis of dynamical systems (= analytical mechanics =
classical mechanics = rational mechanics) is one of the oldest
parts of physics, but, in a sense, the modern period begins with
Poincaré. It is notorious that thephysicists of most of the
twentieth century had little appreciation of Poincaré's work.
Nevertheless, it is his outlook which dominates the field today.
To appreciate this, it helps to have been brought up, as I was, on
a really old-fashioned version of the subject, say that in E.T.
Whittaker's A Treatise on the Analytical Dynamics of Particles and
Rigid Bodies. That is a remarkable book, which has some coverage
of Poincare's technical results but scarcely a word about his
general point of view. Nearly a hundred years later, we find our
thinking completely dominated by Poincare's geometric attitude,
whether we prefer it in the super-Smalean version of R. Abraham
and J. Marsden's Foundations of Mechanics or the proletarian
version of V. Arnold's Classical Mechanics.

What then did Poincaré do to exert all this influence? Here
is a little list - far from complete.

1) Qualitative Dynamics
Generic behavior of flows as a whole, the classification
of phase portraits,

2) Ergodic Theory
Probabilistic notions, recurrence theorem.

3) Existence of Periodic Orbits; Detailed Analysis of the
Structure of a Flow Near a Periodic Orbit.

4) Bifurcation Theory
General ideas for systematic theory; detailed study of
rotating fluid with gravitational attraction.

First, I will comment briefly on 2). It sounds somewhat
anachronistic to call Poincaré a pioneer of ergodic theory but
there is a sense in which it is true. In that sense, the first
theorem of ergodic theory was the invariance of the Liouville
measure while the second was Poincaré's Recurrence Theorem. By
the invariance of the Liouville measure, I refer to the fact that

dql...dq dpl...dp

n n

defines a measure on 2n-dimensional phase space invariant under
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the flow defined by a Hamiltonian system of differential equations

da; oy i °H -1 ..m
= e = 3 e e

dt 3p. dt qu ?

In modern language, the recurrence theorem can be stated as follows

Theorem
Let T be a mapping of a phase space M into itself which pre-
serves a measure U on M:

u(x) = u(T_lx) for any measurable subset X of M

Suppose u is finite i.e.

(M) < e

Then, if A is any measurable subset of M, almost every point x of
A returns to A infinitely often i.e. for an infinite set of posi-
tive integers, n, TM'x € A.

Poincaré emphasized that his proof required only the finite-
ness and invariance of his measure, although the argument used
the language of the theory of incompressible fluids. He had al-
ready gone far in the direction of generality in these matters by
introducing the general notion of integral invariants. These are
invariant integrals of differential forms over subsets of M.

Incidentally, for those who may wish to read the original, T
should note that Poincaré did not call this result a recurrence
theorem; he referred to it as stabilité a la Poisson. You can
find it, along with a magistral exposition of his theory of inte-
gral invariants in his Prize Memoir which won (21 January 1889)
the Prize offered by King Oscar II of Sweden. It is published in
Acta Math 13 (1890) 1-270.

It is interesting to compare this stunningly general result with
what was going on in physics at that time. Maxwell and Boltzmann
had constructed statistical models of gases leading to quantitative
predictions of thermodynamic phenomena, and Boltzmann had pub-
lished a proof of the so-called H-Theorem giving a mechanical
interpretation of the increase of entropy in accord with the
Second Law of Thermodynamics. Boltzmann's proof was greeted with
skepticism because of the Recurrence Theorem and the invariance
under time inversion of the usual Hamiltonian models. Both Maxwell
and Boltzmann made independent efforts to justify statistical pro-
cedures on the basis of what Boltzmann called the Ergodic Hypothesis:
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the trajectory of a Hamiltonian system in phase space passes
through every point of its surface of constant energy. Poincaré
thought it very unlikely that a single trajectory could fill a
whole surface of constant energy. (A theorem to this effect was
proved much later by A. Rosenthal and M. Plancherel.z) He imme-
diately replaced it by the more plausible assumption that every
orbit is dense, a property later called the Quasi-Ergodic Hypothe-
sis by the Ehrenfests, in their well-known article in the Mathema-
tical Encyclopedia.3 Even in the 1890's Poincaré knew too much
about the behavior of orbits in concrete dynamical systems to
believe in the general validity of the Ouasi-Ergodic Hypothesis.
He pointed out that in the restricted problem of three bodies
(interacting with gravitational attractions) there are orbits not
dense on the surfaces of constant values of the integrals of
motion. His general attitude was summarized

"I1 est possible et méme vraisemblable que le
postulat de Maxwell est vrai pour certains systémes
et faux pour d'autres, sans qu'on ait aucun moyen
certain de discerner les uns des autres.'

As will be discussed in the following, we now have some means of
distinguishing ergodic from non-ergodic systems and the first part
of the sentence has turned out to be exactly right.

After the Ehrenfests most theoretical physicists stayed away
from the problem. The only exception I know was Enrico Fermi.
In 1923, he extended a theorem of Poincaré to show that for Hamil-
tonian systems of n degrees of freedom with n > 2 satisfying
certain conditions of genericity, there could exist no smooth hyper-
surface of dimension 2n-1 invariant under the flow except for the
surfaces of constant energy. He then applied his result to prove
that such systems would have to be ergodic because, if there ex-
isted an open subset of the phase space invariant under the flow,
its boundary would be a hypersurface to which the preceding theorem
would apply. This argument assumes that the only subsets which
have to be considered are those with smooth boundaries, an assump-
tion which is now known to fail in general as a result of the KAM
theorem. (See Giovanni Gallavotti's lectures.) Fermi's argument
would have meant that generically there could be no nontrivial
invariant decomposition of the energy surface. (We now know there
are large interesting classes of Hamiltonian systems for which the
orbits are dense on the energy surface and large interesting
classes for which they are not. 1In the latter case, the boundary
of an invariant subset is rough, violating Fermi's assumption.)

Now I turn to 3), the analysis of a flow near a periodic
orbit. It was here that Poincaré uncovered many of the problems

that have evolved into the main subjects of the lectures that
follow.
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When Poincaré began his work, the result which we now know as
the rectification theorem was standard knowledge In a somewhat
modernized form, it is as follows.

Theorem
If v is a continuously differentiable vector field defined in
a neighborhood of a point x;, where v(xg) # O, then in some sub-
neighborhood of xj, there exists a continuously differentiable
change of coordinates x = y = f(x) such that the differential
equation
dx

E
is reduced to the form
Sy, B By Y
dt > dt  dt Tt dt
In pictures
£ «—Pp —p —b
[—Y —Db e *——

Figure 1. The vector field v in a neighborhood of x
is rectified by the mapping f.

In the coordinates y, y; increases proportionally to t, and
Yyseee¥p are integrals of motion. The Rectification Theorem
asserts that a smooth flow is very simple in a neighborhood of a
non-singular point i.e. a point where the vector field is non-
vzﬁishing. If a flow is this simple locally, it is natural to
ask why one cannot use the n-1 local integrals of motion to obtain
a simple global labeling of orbits. The answer is complicated in
general. Sometimes, one can and then one has an integrable system.
Sometimes, one can do it over a large region but runs into diffi-
culties when trying to extend to the whole phase space. The exten-
sion may be impossible because the vector field v has a singular
point at some x; i.e. v(xo) = 0. Alternatively, it may be impossi-
ble because, as one approaches some subset , the neighborhoods
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that the rectification theorem provides get smaller and smaller.
For any finite time the local rectifications could be patched to-
gether but in the limit of infinite time, it would be impossible.

However, the labeling of orbits by Yy +++Yp may fail for a
simpler reason based on the phenomenon of recurrence, which we
know to be very general from Poincaré's Recurrence Theorem. If
the orbit of a particle goes away but returns to a neighborhood
of its starting point, it may not be possible to patch together
the coordinate systems so that they give the orbit the same values
of Yo +++¥n as when it started out. This phenomenon does not
necessarily involve any lack of smoothness or singularity of the
vector field; it is a matter of global geometry of phase space.
(You will hear this eloquently expounded by Trubowitz in his
lectures on integrable systems.)

In the context of the Newtonian N-body problem (N bodies of
masses m,...my interacting by gravitational attraction) the ques-
tion of the existence of global integrals of motion in addition to
the ten well-known integrals

N dx m
i.2
Energy E= ) % m, =D+ i
N j ~dt > > >
j=1 i<k |x -x, |
, N dx
Momen tum P = z m, S
. j dt
j=1
-
N dx
Angular Momentum J = .Z [xJ X mj EE_]
j=1
> > > 1 N - N
Center of Mass MX - Pt where X = N ) m,.x, ,M= ) m

was a famous nineteenth century problem. It was a result of Bruns
that no additional independent integrals exist depending algebra-
ically on the coordinates momenta and time. Poincaré generalized
this result; he showed that algebraic could be replaed by holomor-
phic - this was another result of his Prize Memoir of 1889, the
result which Fermi extended in the work referred to above.

Clearly, to go farther one has to understand the nature of a
flow near a singular point. (This is also the simplest case of a
periodic orbit: all positive real numbers are periods.)

Poincaré's first results in this direction were contained in
his thesis (1879) although the main emphasis there is on other
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matters.5 The thesis, in fact, is mainly about first order partial
differential equations (= PDEs), and Poincaré was principally con-
cerned with completing the Cauchy-Kowalewski theory for those
equations, so that it covered certain cases which previous authors
had not treated. However, in the course of this investigation,

he discussed the ODEs for a bicharacteristic strip in a neighborhood
of an equilibrium point.

Recall that if the PDE is
F(xl...xn, u, pl...pn) =0

where u 1is the unknown function of x;...x, and p; = /%, ...
Py, = 3u/d9x, , then associated with it is a system of ODEs

dx;  oF
Ezl-= 3. (xl...xn, u, pl...pn) ji=1,...n
J
dp.
—1_ _ °E L1 .
T [Bx.(xl"'xn’ u, pl,..pn) + pj a 3j 1,...n
n
du Z oF
du _ y  BF (2)
dt ap.
j=1 ¥ Py
2n+1 . R .6 .
n R , the ODEs for a bicharacteristic strip. When the right-

hand side of (2) vanishes at the initial point, it is called an
equilibrium point. More generally, for the ODE (1), one calls X

a singular point of the vector field v if V(XO) = 0. For the gen-
eral purposes of the present discussion, the special features of
the system (2) for the bicharacteristics are not significant (that
was also the case in Poincaré's thesis) so I will continue the dis-
cussion in terms of the general equation.

For convenience, assume that the singular point Xy is at the
origin of coordinates. There is then a special case in which the
qualitative behavior of the solutions is determined by the eigen-
values of A. For a general differentiable vector field with a
singular point at 0, the Taylor expansion of v provides a linear
transformation with A = (VV)/O and nonlinear correction terms.
Poincaré posed the problem: Under what conditions will a change
of coordinates x = ¢(x) leaving the origin fixed, ¢$(0) = 0, reduce
a vector field to its linear part in a neighborhood of zero:

v(e(x)) = ¢(Ax)

Poincaré assumed v analytic, solved the problem when ¢ is regarded
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as a formal power series, and then gave sufficient conditions
that the formal power series converge. The key to the first step
is the idea of resonance:
Definition Let Al"'xn be the eigenvalues of the matrix A, and

n ‘ B}
X = j§1 ij be a monomial occurring in the Taylor expansion of v.
Then xM is resonant if for some s, 1 < s < n

> 2

n
A= ) A, m, with . >
= 1 3

I o~18
3

In the recursive procedure which Poincaré found for the determina-
tion of the coefficients of the power series for ¢ the quantities
n
Ao~ Y A, m,
s j=1 J 3]

occur in denominators. For a resonant term the procedure fails.
Even if there are no resonant terms there may be trouble at the
next stage if the denominators get small - that is the famous
problem of small divisors - and Poincaré's sufficient condition
for the convergence of the power series for ¢ yields uniform
boundedness away from zero of the denominators. Later on, Dulac
modified Poincare's procedure so as to give a solution of the
normal form problem: find a formal power series_ which transforms
v(x) to the linear term Ax plus resonant terms. All this leaves
open what happens to the flow in the presence of resonances or
where there are no resonances but Poincaré's sufficient condition
for convergence is not satisfied. Poincaré's thesis uncovered
the hard nut of problems which are still with us. For further
details of the Poincaré-Dulac theorgms, see Chapter V of Arnold's
book Chapitres Supplémentaires... .

The previous analysis treats orbits in a neighborhood of a
singular point by finding a coordinate system in which the vector
field on the right-hand side of the ODE is reduced to normal form,
which will be linear in favorable cases. When the procedure goes
through, the linear approximation describes the exact behavior in
the new coordinate system. This analysis is not directly appli-
cable to periodic orbits of strictly positive period, T > 0, but
Poincaré developed a different approach which makes an analogous
analysis possible. Given a periodic orbit, one picks a point on
it and chooses an n-1 dimensional manifold passing through x
and not tangent to the periodic orbit i.e. it is transversal to
the orbit. It is sometimes called a Poincaré section. See
Figure 2. Then through a point x on the section near x there
passes an orbit which will come back and hit the section near x,
but not necessarily at x because not every orbit near x, need be
periodic.
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Figure 2  The Poincaré Section is transversal to the
periodic orbit at xg. The Poincaré mapping
¢ carries the section into itself.

Thus the flow defines a mapping,¢, of a neighborhood of x3 on the
section into itself, the 'once around" mapping, usually called the
Poincaré mapping associated with the periodic orbit and xg and the
Poincaré section. The point x; is a fixed point of the Poincaré
mapping

¢ (xg) = xg

An expansion of ¢(x) in Taylor series about xy has no constant

term and the linear term [(V¢) (x9)](x-xg) can be regarded as an
analogue of the linear approximation Ax to a vector field near an
equilibrium point. One can study the asymptotic behavior of orbits
near theperiodic orbit by studying the iterates ¢"x under the
Poincaré mapping. Notice that the first derivative of ¢ evaluated
at x, is just the nth power of the matrix (V¢)(x,) so the asymp-
totics in linear approximation can be read off from this matrix.
Afterwards, one will put thenonlinear terms back in and see what
qualitative features survive.

Up to this point, everything that has been said applies to a
general ODE. Now, I turn to the more special results which hold
if the ODE is Hamiltonian. Here we have the remarkable fact that
the Poincaré mapping ¢ is always symplectic i.e. on the surface of
section it preserves the symplectic structure which that surface
of section inherits from the general symplectic structure of the
phase space. This has the consequence that the eigenvalues of
(v¢) (xy) always appear in quadruples Asa A", AL, If A is on the
unit circle, the traditional terminology calls it elliptic while
if |x| # 1 it is called hyperbolic. The associated patterns of
flow are strikingly different, as one sees from the two dimension-
al example illustrated in Figure 3. This two-dimensional example
becomes relevant in a Hamiltonian system of two degrees of freedom
where the energy surface, E(qlqulpz) = const, is three-dimensional
and a Poincaré section is two-dimensional. The invariant curves



