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Preface

This is volume one of a two volume series. The intention is to provide
a reference book for researchers in nonlinear partial differential equations
and nonlinear functional analysis, especially for postgraduate students who
want to be led to some of the current research topics. It could be used as a
textbook for postgraduate students, either in formal classes or in working
seminars.

In these two volumes, we attempt to use order structure as a thread to
introduce the various versions of the maximum principles, the fixed point
index theory, and the relevant part of critical point theory and Conley index
theory. The emphasize is on their applications, and we try to demonstrate
the usefulness of these tools by choosing applications to problems in partial
differential equations that are of considerable concern of current research.

An important work in this direction is H. Amann’s classical review ar-
ticle (SIAM Rev. 18 (1976), 620-709), which discussed the combination of
order structure and fixed point index theory and its applications to vari-
ous problems of nonlinear partial differential equations. Much progress has
been made since this article. The fixed point index theory has been fur-
ther developed and found important new applications in partial differential
equations. Moreover, the order structure has since been successfully com-
bined with critical point theory and Conley index theory to study various
nonlinear partial differential equation problems. Furthermore, the classical
maximum principle in partial differential equations has found new appli-
cations in several important problems. All these are scattered in research
articles published in various professional journals, and most of them are
still active topics of current research.

It is our hope that through these two volumes, we can present the reader
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in a somewhat systematic way some of the new progresses in these topics.
As the title suggests, volume 1 mainly considers the maximum principles
and their various applications in some of the current research topics. The
topological methods will be discussed in volume 2.

There are 7 chapters and an appendix in this volume 1. In chapter 1,
we use the Krein-Rutman theorem to derive several well-known properties
of the principal eigenvalues, we then use these in chapter 2 to characterize
the maximum principle. We briefly discuss the moving plane method in
chapter 3. Existence results are not discussed until chapter 4, where we
consider the methods of upper and lower solutions, also known as super
and sub-solution methods. The weak theory here is based on the theory
of monotone operators, whose basic result is recalled without proof. With
these preparations, existence results can be considered in the later chapters.
In chapter 5, the basic logistic model is discussed, where various comparison
arguments, the upper and lower solution methods, together with a variety
of elliptic estimates are used. Chapter 6 gives an introduction of some
basic boundary blow-up problems. The last chapter considers again vari-
ous symmetry properties of elliptic problems, where apart from the moving
plane methods, other techniques are also used. In the appendix, we include
a brief review of the classical elliptic theory for second order partial dif-
ferential equations. Since this basic theory may take a long time for the
beginners to master, we feel it might be practical for those readers such as
postgraduate students to initially accept the relevant basic results in this
theory and continue with their study of some current research topics.

Some of the material is chosen to be included here for its usefulness,
such as the various versions of the maximum principles, and the upper
and lower solution methods. In such a case, we have tried to make the
results as general as possible, provided that not too much complication
of the presentation is caused. Some of the material is included here in
order to introduce useful techniques and to lead the reader to some of the
current research problems. In this situation, we usually put clarity in front
of generality. The material presented and the references quoted here are
mainly based on the author’s taste and familiarity, which inevitably are
biased with many important topics and references not included here. I
apologize if these omissions inadvertently offend anyone.

In volume 2, we will discuss some developments of the fixed point index
theory (mainly due to E.N. Dancer), and their applications to various prob-
lems, in particular to several population models. We will also discuss the
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part of critical point theory and Conley index theory that can be combined
with order structure to provide better applications. Some of the material
in volume 1 here provides necessary preparation for volume 2.

It is my great pleasure to thank all those who helped in one way or
another in the writing of this first volume. In particular, I would like
to express my deep thanks to Professor Norman Dancer for guiding me
into nonlinear analysis, and for the constant help and encouragements.
My sincere thanks to Professor Dajun Guo for taking me into nonlinear
functional analysis, and to Professor Xingbin Pan for encouraging me to
write this book. I'm grateful to my colleagues at the University of New
England who freed me from teaching duties in the first half of 2005; that
helped immensely in getting this belated volume ready before the end of the
year. Part of the material here was presented at Qufu Normal University
at a workshop in 2004, and my thanks go to the colleagues there for the
help and support. Over the years, I have benefitted greatly from working
with my collaborators. My sincere thanks to all of them, in particular,
Florica Cirstea, Zongming Guo, Shujie Li, Lishan Liu, Li Ma, Tiancheng
Ouyang, Shusen Yan, Feng Zhou, and my former PhD students and friends
Qingguang Huang and Wei Dong, whose joint papers with me are used
in this volume. Several friends helped me proof reading various parts of
this volume, and I would like to thank in particular Florica Cirsta, Xing
Liang, Rui Peng and Shusen Yan for their efforts in helping me reducing the
mistakes. It is my responsibility for any remaining mistakes, and corrections
from the readers are very much appreciated. My sincere thanks also go to
the editors of World Scientific Publishing, especially Ms Zhang Ji, for all
the help and advices. Finally I thank my family for the understanding and
support during the writing of this book.

Yihong Du
September, 2005, Armidale
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Chapter 1

Krein-Rutman Theorem and the
Principal Eigenvalue

The Krein-Rutman theorem plays a very important role in nonlinear par-
tial differential equations, as it provides the abstract basis for the proof of
the existence of various principal eigenvalues, which in turn are crucial in
bifurcation theory, in topological degree calculations, and in stability anal-
ysis of solutions to elliptic equations as steady-state of the corresponding
parabolic equations. In this chapter, we first recall the well-known Krein-
Rutman theorem and then combine it with the classical maximum principle
of elliptic operators to prove the existence of principle eigenvalues for such
operators.

Let X be a Banach space. By a cone K C X we mean a closed convex
set such that AK C K for all A > 0 and K N (—K) = {0}. A cone K in X
induces a partial ordering < by the rule: u < v if and only if v — u € K.
A Banach space with such an ordering is usually called a partially ordered
Banach space and the cone generating the partial ordering is called the
positive cone of the space. If K — K = X, i.e., the set {u — v : u,v € K}
is dense in X, then K is called a total cone. If K — K = X, K is called a
reproducing cone. If a cone has nonempty interior K°, then it is called a
solid cone. Any solid cone has the property that K — K = X; in particular,
it is total. Indeed, choose o € K° and r > 0 such that the closed ball
B, (up) = {u € X : ||u — ug|| £ r} is contained in K. Then for any
u € X\{0}, vo := uo+ru/||ul| € K and hence u = (||u||/7)(vo—uo) € K—K.
We write u > vif u—v € K\ {0}, and u>> vifu—v e K°.

Let X* denote the dual space of X. The set K* := {l € X* : l(z) >
0Vz € K} is called the dual cone of K. It is easily seen that K* is closed
and convex, and AK* C K* for any A > 0. However it is not generally true
that K* N (—K*) = {0}. But if K is total, this last condition is satisfied
and hence K* is a cone in X*. Indeed, if | € K* N (—K™*), then for every
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z € K, l(z) > 0,-I(z) > 0, and therefore [(z) = 0 for all z € K. Since
K — K = X, this implies that I(z) =0 for all z € X, i.e., | = 0.

Let © be a bounded domain in RY. It is easily seen that the set of
nonnegative functions K in X = LP(Q) is a cone satisfying K — K = X.
However, it has empty interior. Similarly the set of nonnegative func-
tions in W1P(Q) gives a reproducing cone, and generally the nonnegative
functions in W*?(Q) (k > 2,p > 1) form a total cone. On the other
hand, the nonnegative functions form a solid cone in C(Q2) but only form

a reproducing cone in Cp(Q) := {u € C(Q) : u = 0on 9N}. If Q has
C! boundary 0%, then it is easy to see that the nonnegative functions in
Ci(Q) = {u e CY(N) : u = 0on N} form a solid cone; for example, any
function satisfying u(z) > 0 in Q and D,u(z) < 0 on 09 is in the interior
of the cone, where v denotes the outward unit normal of 9.

Theorem 1.1 (The Krein-Rutman Theorem, [Deimling(1985)] Theorem
19.2 and Ex.12) Let X be a Banach space, K C X a total cone and
T: X — X a compact linear operator that is positive (i.e., T(K) C K)
with positive spectral radius r(T'). Then v(T) is an eigenvalue with an
eigenvector u € K \ {0}: Tu = r(T)u. Moreover, r(T*) = r(T) is an
eigenvalue of T* with an eigenvector u* € K*.

Let us now use Theorem 1.1 to derive the following useful result.

Theorem 1.2 Let X be a Banach space, K C X a solid cone, T : X — X
a compact linear operator which is strongly positive, i.e., Tu >0 if u > 0.
Then

(a) r(T) > 0, and r(T) is a simple eigenvalue with an eigenvector
v € KO, there is no other eigenvalue with a positive eigenvector.
(b) |A| < r(T) for all eigenvalues X # r(T).

Let us recall that r is a simple eigenvalue of T if there exists v # 0 such
that Tv =rv and (] — T)"w = 0 for some n > 1 implies w € span{v}.

Proof. Step 1: There exists vo > 0 such that Tvg = r(T)vo.

Fix u € K° Then aTu > u for some a > 0, and we can find o > 0
such that B,(u) C K. It follows that w < (o) ~!||w||u for any w € X. Let
S =aT. Then

u < S™u < o7 |SMullu < oS Jullu, Yn > 1.
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Hence
IS™]| > o/||u|| and 7(S) = lim HSnHI/n S 0.

By Theorem 1.1, r(S) is an eigenvalue of S corresponding to a positive
eigenvector vg € K \ {0}. Clearly r(T') = r(S)/a > 0 and Tvg = r(T)vo.

Step 2: To prove that r(T') is simple, we show a more general conclu-
sion: If r > 0 and Tv = rv for some v > 0, then r is a simple eigenvalue
of T.

Let us first show that (r] — T)w = 0 implies w € span{v}. Suppose
Tw = rw with w # 0. Then T'(v + tw) = r(v £ tw) for all t > 0. Since T
is strongly positive, v € K° and the above identity implies v + tw & 0K
unless v+ tw = 0. But v+ tw € K° for small ¢ and this cannot hold for all
large t for otherwise w € K N (—K) = {0}. Therefore there exists to # 0
such that v+ tow € 0K and hence v + tow = 0. This proves w € span{v}.

Let (rI — T)?w = 0. By what has just been proved, rw — Tw = touv for
some tg € R'. If ty # 0, then we may assume t; > 0 (otherwise change w
to —w). Since

T(v+ sw) = r(v+ sw) — stov L (v + sw) for all s > 0,

and v + sw € K° for all small s > 0, we easily deduce v + sw € K° for all
s > 0. This implies that w € K, and hence w = r~!(tov + Tw) € K°. We
now have

w —tv € K° for all small t > 0,

but not for all large ¢t > 0 as this would imply v = 0. Therefore there exists
t1 > 0 such that w — t;v € K. But then

rw—tov —tyrv =T (w—t1v) >0, w—tv> r~ltov > 0,

contradicting w — t;v € K. Therefore we must have tg = 0 and hence
rw — Tw = 0, w € span{v}. This proves that r is a simple eigenvalue.

Step 3: Next we show that T cannot have two positive eigenvalues
r1 > T9 corresponding to positive eigenvectors:

Tvy = r1vy, Tvg = rous.

Let v(t) = va — tvy,t > 0. Since T is strongly positive, we have vy, vy €
K°. As before we have v(t) € K for small ¢ but not for all large t.



4 Mazimum Principles and Applications

Therefore there exists to > 0 such that v(tp) € K but v(t) € K for t > to.
We now have

Vg — to(TI/T‘g)‘Ul = 7‘2—1T(U2 = to'l)l) €K,

which implies r; < 75 due to the maximality of t9. This contradiction
proves step 3.

Step 4: If Tw = Aw with w # 0 and X # r(T), then |A| < r(T).

If A > 0, then by Step 3, w ¢ K. It follows that vg + tw € K for
all small ¢ > 0 but not for all large t. Therefore there exists to > 0 such
that vo + tow € K and vg + tw € K for t > to. It then follows that
vo + to(A/r(T))w = r(T) 1T (vo + tow) € K. The maximality of o implies
that A < 7(T) and hence A < r(T).

If A < 0, then from T?w = Aw and T?vy = r(T)%ve and the above
argument (applied to T?) we deduce A? < r(T)? and hence |A| < r(T).

Consider now the case that A = o + i7 with 7 # 0. Then necessarily
w = u + iv and

Tu=o0u—71v, Tv=Tu+ov. (1.1)

We observe that u and v are linearly independent for otherwise we neces-
sarily have 7 = 0. Let X; := span{u,v}. Then (1.1) implies that X is an
invariant subspace of T'. We claim that K := X;NK = {0}. Otherwise K
is a positive cone in X; with nonempty interior, as for any w € K; \ {0},
Tw € X, N K° = K?. We can now apply Step 1 above to T on X; to
conclude that there exists 7 > 0 and wo € K} such that Twg = rwp. By
Steps 2 and 3, we necessarily have r = r(T") and wo € span{vo}. In other
words, vg € K; and vg = au + Bv for some real numbers o and 8. But
then one can use (1.1) and Tvg = r(T)vg to easily derive « = 8 = 0, a
contradiction. Therefore K; = {0}.
From span{u,v} N K = {0} we find that the set

Yi={(n) €R v+ Eutnue K}

is bounded and closed. Since vg € K° M :=sup{€? +n%: (£,n) € T} >0
and is achieved at some (£o,7m0) € ¥. Let 20 = vo + &u + nov. Then
zo € K\ {0} and Tzo € K°. Therefore we can find a € (0,7(T')) such that
TZO Z Vo, i.e.,

(r(T) — @)vo + (§1u +mv) >0, (1.2)
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where
&1 = &o +noT, M =Moo — &oT.

Clearly

& +ni = (0® +7°)(& +n3) = MIAP%.
By (1.2), we find that (&1,m)/(7(T) — @) € X and hence

& +m < M(r(T) - a)?,
that is,
A < (n(T) - )2,

and hence |A| < 7(T'). The proof of Step 4 and hence the theorem is now
complete. a

Suppose now L is the elliptic operator and € the bounded domain as
given in Theorem A.4, namely

Lu = a“(z)Diju + b*(2) Diu + c(z)u

has C*(Q) coefficients and is strictly uniformly elliptic in the bounded
domain Q which has C?2 boundary. Choose £ > 0 large enough so that
c—¢<0in Q, and denote Lgu = Lu — &u. Let K be the positive cone in
X = Cé""(ﬁ) consisting of nonnegative functions. For any v € X, Theorem
A.1 guarantees that the problem

—Leu=vin Q, u=0on 00
has a unique solution u satisfying
lullza < Cllvlla < Cil|v]1,a

for some constant C; > 0 independent of u and v. It followsthat T : X — X
defined by Tv = u is a compact linear operator. Moreover, by the weak
maximum principle Theorem A.34, Tv > 0 if v € K. The strong maximum
principle Theorem A.36 then implies that u = Tv > 0in Q if v € K \ {0},
and the Hopf boundary lemma (Lemma A.35) gives further D,u < 0 on
9Q. This implies that Tv € K°. Therefore T is strongly positive. It now
follows from Theorem 1.2 that r(T') > 0 is a simple eigenvalue of T' with
an eigenfunction v € K% Tw = r(T)v. Thus u = Tv satisfies

—Lu+&u=7(T)'uin Q, u=0on 0Q,
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ie.,
Lu+ Au=0in Q, u=0 on 91,

with A\ = r(T)~! - &.
Generally, it is easily checked that pu is an eigenvalue of T if and only if
A= pu~! — £ is an eigenvalue of

Lu+ Au=0in Q, u=0 on 0. (1.3)
Theorem 1.2 now implies the following result.

Theorem 1.3 Under the conditions of Theorem A.J for L and Q, the
eigenvalue problem (1.8) has a simple eigenvalue \; € R which corresponds
to a positive eigenfunction; none of the other eigenvalues corresponds to a
positive eigenfunction.

If the boundary operator is of Neumann or Robin type,
Bu= D,u+a(x)u, 0 >0, o € C1*(09N),

then we let X = C1*(Q0) and let K be the cone of nonnegative functions
in this space. We define the operator T analogously as in the Dirichlet
case and again find that it is compact on X and maps K to itself, due
to the weak maximum principle. Suppose now v € K \ {0}. Then by
the strong maximum principle, u = Tv > 0 in Q. Moreover, by the Hopf
boundary lemma, if u(zg) = 0 for some zo € 91, then D, u(zo) < 0 and
hence Bu(zo) < 0, contradicting the boundary condition. Therefore u > 0
on 9Q. Therefore Tv > 0 on §, which implies that Tv € K°, ie., T is
strongly positive. Therefore we can apply Theorem 1.2 to conclude that
Theorem 1.3 holds also for the Neumann and Robin boundary conditions.
The eigenvalue A; in Theorem 1.3 is usually called the principle eigenvalue.

Theorem 1.4 If A # Ay is an eigenvalue of (1.3) but the boundary con-
dition is either Dirichlet, or Neumann, or Robin type, then Re(\) > \;.

Proof. Suppose w > 0 is an eigenvector corresponding to A\; and u is an
eigenvector corresponding to A. Set v := u/w. Then

2w =wLvw) = Lv—cv + 2w_1aiijwDiv — Av.
Writing

Kv :=a"Dijv +b'Div, b* := b' + 2w a" D;w,
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we obtain
Kv+(A=X)v=0.
Take complex conjugates to yield
Ko+ (A —X\)v=0.
Next we compute
K(|v|*) = K(v0) = 5Kv + vKT + 22" D;vD;v > 7Kv + vK7,
since
a¢;€; = a' (Re(&)Re(&;) + Im(&:)Im(&;)) > 0
for any complex vector £ € CV. We now easily obtain
K(lof?) = 2(Re(A) = Ao in Q.

Suppose now the boundary operator B is either Neumann or Robin
type. Then w > 0 over Q and a direct computation shows D,v = 0 and
D,|v|?2 = 0. If Re(\) < A1, then ¢ := |v|? > 0 satisfies

K¢p>0in Q, D,¢ =0 on 0N.

We now apply the strong maximum principle and Hopf boundary lemma
and conclude that ¢ = constant, that is u = cw and hence A = A, a
contradiction. Therefore we must have Re(\) > ;.

To prove the Dirichlet case, we replace w by w, := w!™¢, 0 < e < 1, in
the above discussion and obtain

K(jv[?) > —2(Re()) + %)W in Q.
€
Since

Lwe = (1 - €)w *Lw — ¢(1 — €)w™ ' ~“a” D;wD;w + ecw' ¢

<(1—ew  Lw + ecw'™¢ < (eC — (1 — €)A\)we,
where C = maxg ¢, we deduce

K([v]?) > 2((1 — €A1 — €C — Re(N))[v|? in Q.



